1. 如何用python进行数据分析
1、Python数据分析流程及学习路径
数据分析的流程概括起来主要是:读写、处理计算、分析建模和可视化四个部分。在不同的步骤中会用到不同的Python工具。每一步的主题也包含众多内容。
根据每个部分需要用到的工具,Python数据分析的学习路径如下:
相关推荐:《Python入门教程》
2、利用Python读写数据
Python读写数据,主要包括以下内容:
我们以一小段代码来看:
可见,仅需简短的两三行代码即可实现Python读入EXCEL文件。
3、利用Python处理和计算数据
在第一步和第二步,我们主要使用的是Python的工具库NumPy和pandas。其中,NumPy主要用于矢量化的科学计算,pandas主要用于表型数据处理。
4、利用Python分析建模
在分析和建模方面,主要包括Statsmdels和Scikit-learn两个库。
Statsmodels允许用户浏览数据,估计统计模型和执行统计测试。可以为不同类型的数据和每个估算器提供广泛的描述性统计,统计测试,绘图函数和结果统计列表。
Scikit-leran则是着名的机器学习库,可以迅速使用各类机器学习算法。
5、利用Python数据可视化
数据可视化是数据工作中的一项重要内容,它可以辅助分析也可以展示结果。
2. python可以做数据分析吗
Python已成为数据分析和数据科学事实上的标准语言和标准平台之一。
下面是Python生态系统为数据分析师和数据科学家提供的常用程序库。
NumPy:这是一个通用程序库,不仅支持常用的数值数组,同时提供了用于高效处理这些数组的函数。
SciPy:这是Python的科学计算库,对NumPy的功能进行了大量扩充,同时也有部分功能是重合的。Numpy和SciPy曾经共享基础代码,后来分道扬镳了。
Pandas:这是一个用于数据处理的程序库,不仅提供了丰富的数据结构,同时为处理数据表和时间序列提供了相应的函数。
Matplotlib:这是一个2D绘图库,在绘制图形和图像方面提供了良好的支持。当前,Matplotlib已经并入SciPy中并支持NumPy。
IPython:这个库为Python提供了强大的交互式Shell,也为Jupyter提供了内核,同时还支持交互式数据可视化功能。
Jupyter Notebook:它提供了一个基于Web的交互式shell,可以创建和共享支持可实时代码和可视化的文档。Jupyter Notebook通过IPython提供的内核支持多个版本的Python。
python可以说是数据分析一大利器。
3. 怎样用 Python 进行数据分析
做数据分析,首先你要知道有哪些数据分析的方法,然后才是用Python去调用这些方法
那Python有哪些库类是能做数据分析的,很多,pandas,sklearn等等
所以你首先要装一个anaconda套件,它包含了几乎所有的Python数据分析工具,
之后再学怎么分析。
4. 武汉北大青鸟分享如何利用python语言进行数据分析
随着互联网的不断发展,数据分析已经成为指导我们工作方向的主要依据之一,而今天我们就一起来了解一下,如何利用python编程开发来进行数据分析,下面电脑培训http://www.kmbdqn.cn/就开始今天的主要内容吧。
为什么要学习Python进行数据分析?Python作为一种用于数据分析的语言,近引起了广泛的兴趣。
我以前学过Python的基础知识。
下面是一些支持学习Python的原因:开源-免费安装很棒的在线社区简单易学可以成为数据科学和基于web的分析产品生成的通用语言不用说,它也有一些缺点:它是一种解释语言而不是编译语言——因此可能会占用更多的CPU时间。
但是,考虑到节省了程序员的时间(由于易于学习),它仍然是一个不错的选择。
Python2.7和3.4这是Python中受争议的话题之一。
您一定会遇到它,特别是如果您是初学者的话。
这里没有正确/错误的选择。
这完全取决于情况和你的需要。
我会试着给你一些建议来帮助你做出明智的选择。
为什么Python2.7?很棒的社区支持!这是你早年需要的东西。
Python2于2000年末发布,已经使用了超过15年。
过多的三方库!虽然许多库都提供了3.x支持,但仍然有很多模块只能在2.x版本上工作。
如果您计划将Python用于特定的应用程序,比如高度依赖外部模块的web开发,那么使用2.7可能会更好。
5. 武汉北大青鸟分享数据分析主要学习的内容有哪些
没有任何事情是能够速成的,越是像数据分析这种收益周期长的技能,越是这样。
但这并不代表,我们不能用一些有意思的方式,把学习的过程变得高效而有趣。
这篇文章是要给所有正在学习数据分析,甚至还没入门的同学一个高效的学习路径,让更多人可以平滑地、高效地成为专业数据分析师。
学习一门技术之前,你应该知道,你想要达成的目标是什么样的,也就是说,你想通过这门技术来解决哪些问题。
有了这个目标,你就可以知道要达成这样的目标,它的知识体系是怎么样的。
武汉电脑培训http://www.kmbdqn.cn/认为只有明确的目标导向,学习最有用的那部分知识,才能避免无效信息降低学习效率。
如果你要成为数据分析师,那么你可以去招聘网站看看,对应的职位的需求是什么,一般来说你就会对知识体系有初步的了解。
企业对技能需求可总结如下:SQL数据库的基本操作,会基本的数据管理会用Excel/SQL做基本的数据提取、分析和展示会用脚本语言进行数据分析,PythonorR有获取外部数据的能力加分,如爬虫或熟悉公开数据集会基本的数据可视化技能,能撰写数据报告熟悉常用的数据挖掘算法:回归分析、决策树、分类、聚类方法其次是数据分析的流程,一般可以按“数据获取-数据存储与提取-数据预处理-数据建模与分析-数据可视化”这样的步骤来实施一个数据分析项目。
按照这个流程,每个部分需要掌握的细分知识点如下:高效的学习路径是什么就是数据分析的这个流程。
按这样的顺序循序渐进,你会知道每个部分需要完成的目标是什么,需要学习哪些知识点,哪些知识是暂时不必要的。
每学习一个部分,你就能够有一些实际的成果输出,有正向的反馈,你才会愿意花更多的时间投入进去。
以解决问题为目标,效率自然不会低。
6. python做数据分析怎么样
我使用python这门语言也有三年了,被其简洁、易读、强大的库所折服,我已经深深爱上了python。其pythonic语言特性,对人极其友好,可以说,一个完全不懂编程语言的人,看懂python语言也不是难事。
在数据分析和交互、探索性计算以及数据可视化等方面,相对于R、MATLAB、SAS、Stata等工具,Python都有其优势。近年来,由于Python库的不断发展(如pandas),使其在数据挖掘领域崭露头角。结合其在通用编程方面的强大实力,我们完全可以只使用Python这一种语言去构建以数据为中心的应用程序。
由于python是一种解释性语言,大部分编译型语言都要比python代码运行速度快,有些同学就因此鄙视python。但是小编认为,python是一门高级语言,其生产效率更高,程序员的时间通常比CPU的时间值钱,因此为了权衡利弊,考虑用python是值得的。
Python强大的计算能力依赖于其丰富而强大的库:
Numpy
Numerical Python的简称,是Python科学计算的基础包。其功能:
1. 快速高效的多维数组对象ndarray。
2. 用于对数组执行元素级计算以及直接对数组执行数学运算的函数。
3. 线性代数运算、傅里叶变换,以及随机数生成。
4. 用于将C、C++、Fortran代码集成到Python的工具。
除了为Python提供快速的数组处理能力,NumPy在数据分析方面还有另外一个主要作用,即作为在算法之间传递数据的容器。对于数值型数据,NumPy数组在存储和处理数据时要比内置的Python数据结构高效得多。此外,由低级语言(比如C和Fortran)编写的库可以直接操作NumPy数组中的数据,无需进行任何数据复制工作。
SciPy
是一组专门解决科学计算中各种标准问题域的包的集合,主要包括下面这些包:
1. scipy.integrate:数值积分例程和微分方程求解器。
2. scipy.linalg:扩展了由numpy.linalg提供的线性代数例程和矩阵分解功能。
3. scipy.optimize:函数优化器(最小化器)以及根查找算法。
4. scipy.signal:信号处理工具。
5. scipy.sparse:稀疏矩阵和稀疏线性系统求解器。
6. scipy.special:SPECFUN(这是一个实现了许多常用数学函数(如伽玛函数)的Fortran库)的包装器。
7. scipy.stats:标准连续和离散概率分布(如密度函数、采样器、连续分布函数等)、各种统计检验方法,以及更好的描述统计法。
8. scipy.weave:利用内联C++代码加速数组计算的工具。
注:NumPy跟SciPy的有机结合完全可以替代MATLAB的计算功能(包括其插件工具箱)。
SymPy
是python的数学符号计算库,用它可以进行数学表达式的符号推导和演算。
pandas
提供了使我们能够快速便捷地处理结构化数据的大量数据结构和函数。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。
pandas兼具NumPy高性能的数组计算功能以及电子表格和关系型数据库(如SQL)灵活的数据处理功能。它提供了复杂精细的索引功能,以便更为便捷地完成重塑、切片和切块、聚合以及选取数据子集等操作。
对于使用R语言进行统计计算的用户,肯定不会对DataFrame这个名字感到陌生,因为它源自于R的data.frame对象。但是这两个对象并不相同。R的data.frame对象所提供的功能只是DataFrame对象所提供的功能的一个子集。也就是说pandas的DataFrame功能比R的data.frame功能更强大。
matplotlib
是最流行的用于绘制数据图表的Python库。它最初由John D. Hunter(JDH)创建,目前由一个庞大的开发人员团队维护。它非常适合创建出版物上用的图表。它跟IPython(马上就会讲到)结合得很好,因而提供了一种非常好用的交互式数据绘图环境。绘制的图表也是交互式的,你可以利用绘图窗口中的工具栏放大图表中的某个区域或对整个图表进行平移浏览。
TVTK
是python数据三维可视化库,是一套功能十分强大的三维数据可视化库,它提供了Python风格的API,并支持Trait属性(由于Python是动态编程语言,其变量没有类型,这种灵活性有助于快速开发,但是也有缺点。而Trait库可以为对象的属性添加检校功能,从而提高程序的可读性,降低出错率。) 和NumPy数组。此库非常庞大,因此开发公司提供了一个查询文档,用户可以通过下面语句运行它:
>>> from enthought.tvtk.toolsimport tvtk_doc
>>> tvtk_doc.main()
Scikit-Learn
是基于python的机器学习库,建立在NumPy、SciPy和matplotlib基础上,操作简单、高效的数据挖掘和数据分析。其文档、实例都比较齐全。
小编建议:初学者使用python(x, y),其是一个免费的科学和工程开发包,提供数学计算、数据分析和可视化展示。非常方便!
其官网:www.pythonxy.com(由于某种原因,国内上不去,需要翻墙)
下载地址:ftp://ftp.ntua.gr/pub/devel/pythonxy/(小编到网上搜到的一个地址,亲测可以用)
下图展示了python(x, y) 强大功能。
7. python如何做数据分析
Python做数据分析比较好用且流行的是numpy、pandas库,有兴趣的话,可以深入了解、学习一下。
8. python可以做哪些数据分析
1、检查数据表
Python中使用shape函数来查看数据表的维度,也就是行数和列数。你可以使用info函数查看数据表的整体信息,使用dtypes函数来返回数据格式。Isnull是Python中检验空值的函数,你可以对整个数据表进行检查,也可以单独对某一列进行空值检查,返回的结果是逻辑值,包含空值返回True,不包含则返回False。使用unique函数查看唯一值,使用Values函数用来查看数据表中的数值。
2、数据表清洗
Python中处理空值的方法比较灵活,可以使用Dropna函数用来删除数据表中包含空值的数据,也可以使用fillna函数对空值进行填充。Python中dtype是查看数据格式的函数,与之对应的是astype函数,用来更改数据格式,Rename是更改列名称的函数,drop_plicates函数删除重复值,replace函数实现数据替换。
3、数据预处理
数据预处理是对清洗完的数据进行整理以便后期的统计和分析工作,主要包括数据表的合并、排序、数值分列、数据分组及标记等工作。在Python中可以使用merge函数对两个数据表进行合并,合并的方式为inner,此外还有left、right和outer方式。使用ort_values函数和sort_index函数完成排序,使用where函数完成数据分组,使用split函数实现分列。
4、数据提取
主要是使用三个函数:loc、iloc和ix,其中loc函数按标签值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。除了按标签和位置提起数据以外,还可以按具体的条件进行数据,比如使用loc和isin两个函数配合使用,按指定条件对数据进行提取。
5、数据筛选汇总
Python中使用loc函数配合筛选条件来完成筛选功能,配合sum和 count函数还能实现excel中sumif和countif函数的功能。Python中使用的主要函数是groupby和pivot_table。groupby是进行分类汇总的函数,使用方法很简单,制定要分组的列名称就可以,也可以同时制定多个列名称,groupby 按列名称出现的顺序进行分组。
9. 武汉北大青鸟分享零基础应该怎么学习Python
作为第一语言和数据分析使用的语言,Python程序语言变成了现代人才市场的最炙手可热的语言,现在在有很多零基础、没有计算机专业基础的人想要学习Python语言,那么在学习Python语言的时候应该从哪些方面进行学习呢?下面武汉电脑培训为大家具体介绍。
一、注意细节区分优秀的程序员和一般的程序员的重要标准是对细节的注意度。
实际上,这也是区分所有行业的标准。
如果对工作中所有微小的细节注意不够,你的工作成果就会变得很不足。
武汉IT培训认为只要注意细节,程序可以远离许多错误和困难的系统。
二、发现不同程序员漫长的岁月工作能够培养出一个重要的技能,它拥有不同点的区分能力。
有经验的程序员看到的只有微小差异的2个程序,可以明确的指出其不同。
另外,武汉IT培训发现程序可以变得非常容易,并且可以提高对程序的处理和其他问题的敏感性。
三、学会问当你写代码的时候就会出现错误,这意味着你写的代码是存在问题和缺陷的。
但是很多错误会隐藏在你不知道的地方,你必须尽力找到它。
如果你只是一直盯着电脑屏幕看,这样是无法解决问题的,因此武汉电脑培训建议可以通过求助别人和查找资料来解决问题。
四、不要复制和粘贴你必须将各个项目的代码进行手动输入,如果使用粘贴复制是没有任何意义的。
完成一个项目能够很好的锻炼动手能力和大脑的思考能力,让你具备读写代码和观察代码的能力。
电脑培训认为如果你采用粘贴复制的方法,会大大的降低练习代码的效果。
10. 利用python实现数据分析
链接:
炼数成金:Python数据分析。Python是一种面向对象、直译式计算机程序设计语言。也是一种功能强大而完善的通用型语言,已经具有十多年的发展历史,成熟且稳定。Python 具有脚本语言中最丰富和强大的类库,足以支持绝大多数日常应用。 Python语法简捷而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,它能够很轻松的把用其他语言制作的各种模块(尤其是C/C++)轻松地联结在一起。
课程将从Python的基本使用方法开始,一步步讲解,从ETL到各种数据分析方法的使用,并结合实例,让学员能从中借鉴学习。
课程目录:
Python基础
Python的概览——Python的基本介绍、安装与基本语法、变量类型与运算符
了解Python流程控制——条件、循环语句与其他语句
常用函数——函数的定义与使用方法、主要内置函数的介绍
.....