㈠ 请问,在计算机图形学中,四连通算法填充时,种子会会重复入栈吗
会啊,它入栈的顺序是左上右下如有疑问请加429198063一起商讨
㈡ python可以用来处理图像吗
可以的,
PythonWare公司提供了免费的Python图像处理工具包PIL(Python Image Library),该软件包提供了基本的图像处理功能,如:
改变图像大小,旋转图像,图像格式转换,色场空间转换,图像增强,直方图处理,插值和滤波等等。虽然在这个软件包上要实现类似MATLAB中的复杂的图像处理算法并不太适合,但是Python的快速开发能力以及面向对象等等诸多特点使得它非常适合用来进行原型开发。
在PIL中,任何一副图像都是用一个Image对象表示,而这个类由和它同名的模块导出,因此,最简单的形式是这样的:
import Image img = Image.open(“dip.jpg”)
注意:第一行的Image是模块名;第二行的img是一个Image对象;
Image类是在Image模块中定义的。关于Image模块和Image类,切记不要混淆了。现在,我们就可以对img进行各种操作了,所有对img的
操作最终都会反映到到dip.img图像上。
PIL提供了丰富的功能模块:Image,ImageDraw,ImageEnhance,ImageFile等等。最常用到的模块是
Image,ImageDraw,ImageEnhance这三个模块。下面我对此分别做一介绍。关于其它模块的使用请参见说明文档.有关PIL软件包和
相关的说明文档可在PythonWare的站点www.Pythonware.com上获得。
Image模块:
Image模块是PIL最基本的模块,其中导出了Image类,一个Image类实例对象就对应了一副图像。同时,Image模块还提供了很多有用的函数。
(1)打开一文件:
import Image img = Image.open(“dip.jpg”)
这将返回一个Image类实例对象,后面的所有的操作都是在img上完成的。
(2)调整文件大小:
import Image img = Image.open("img.jpg") new_img = img.resize
((128,128),Image.BILINEAR) new_img.save("new_img.jpg")
原来的图像大小是256x256,现在,保存的new_img.jpg的大小是128x128。
就是这么简单,需要说明的是Image.BILINEAR指定采用双线性法对像素点插值。
在批处理或者简单的Python图像处理任务中,采用Python和PIL(Python Image Library)的组合来完成图像处理任务是一个很不错的选择。设想有一个需要对某个文件夹下的所有图像将对比度提高2倍的任务。用Python来做将是十分简单的。当然,我也不得不承认Python在图像处理方面的功能还比较弱,显然还不适合用来进行滤波、特征提取等等一些更为复杂的应用。我个人的观点是,当你要实现这些“高级”的算法的时候,好吧,把它交给MATLAB去完成。但是,如果你面对的只是一个通常的不要求很复杂算法的图像处理任务,那么,Python图像处理应该才是你的最佳搭档。
㈢ python处理图片数据
目录
1.机器是如何存储图像的?
2.在Python中读取图像数据
3.从图像数据中提取特征的方法#1:灰度像素值特征
4.从图像数据中提取特征的方法#2:通道的平均像素值
5.从图像数据中提取特征的方法#3:提取边缘
是一张数字8的图像,仔细观察就会发现,图像是由小方格组成的。这些小方格被称为像素。
但是要注意,人们是以视觉的形式观察图像的,可以轻松区分边缘和颜色,从而识别图片中的内容。然而机器很难做到这一点,它们以数字的形式存储图像。请看下图:
机器以数字矩阵的形式储存图像,矩阵大小取决于任意给定图像的像素数。
假设图像的尺寸为180 x 200或n x m,这些尺寸基本上是图像中的像素数(高x宽)。
这些数字或像素值表示像素的强度或亮度,较小的数字(接近0)表示黑色,较大的数字(接近255)表示白色。通过分析下面的图像,读者就会弄懂到目前为止所学到的知识。
下图的尺寸为22 x 16,读者可以通过计算像素数来验证:
图片源于机器学习应用课程
刚才讨论的例子是黑白图像,如果是生活中更为普遍的彩色呢?你是否认为彩色图像也以2D矩阵的形式存储?
彩色图像通常由多种颜色组成,几乎所有颜色都可以从三原色(红色,绿色和蓝色)生成。
因此,如果是彩色图像,则要用到三个矩阵(或通道)——红、绿、蓝。每个矩阵值介于0到255之间,表示该像素的颜色强度。观察下图来理解这个概念:
图片源于机器学习应用课程
左边有一幅彩色图像(人类可以看到),而在右边,红绿蓝三个颜色通道对应三个矩阵,叠加三个通道以形成彩色图像。
请注意,由于原始矩阵非常大且可视化难度较高,因此这些不是给定图像的原始像素值。此外,还可以用各种其他的格式来存储图像,RGB是最受欢迎的,所以笔者放到这里。读者可以在此处阅读更多关于其他流行格式的信息。
用Python读取图像数据
下面开始将理论知识付诸实践。启动Python并加载图像以观察矩阵:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from skimage.io import imread, imshow
image = imread('image_8_original.png', as_gray=True)
imshow(image)
#checking image shape
image.shape, image
(28,28)
矩阵有784个值,而且这只是整个矩阵的一小部分。用一个LIVE编码窗口,不用离开本文就可以运行上述所有代码并查看结果。
下面来深入探讨本文背后的核心思想,并探索使用像素值作为特征的各种方法。
方法#1:灰度像素值特征
从图像创建特征最简单的方法就是将原始的像素用作单独的特征。
考虑相同的示例,就是上面那张图(数字‘8’),图像尺寸为28×28。
能猜出这张图片的特征数量吗?答案是与像素数相同!也就是有784个。
那么问题来了,如何安排这784个像素作为特征呢?这样,可以简单地依次追加每个像素值从而生成特征向量。如下图所示:
下面来用Python绘制图像,并为该图像创建这些特征:
image = imread('puppy.jpeg', as_gray=True)
image.shape, imshow(image)
(650,450)
该图像尺寸为650×450,因此特征数量应为297,000。可以使用NumPy中的reshape函数生成,在其中指定图像尺寸:
#pixel features
features = np.reshape(image, (660*450))
features.shape, features
(297000,)
array([0.96470588, 0.96470588, 0.96470588, ..., 0.96862745, 0.96470588,
0.96470588])
这里就得到了特征——长度为297,000的一维数组。很简单吧?在实时编码窗口中尝试使用此方法提取特征。
但结果只有一个通道或灰度图像,对于彩色图像是否也可以这样呢?来看看吧!
方法#2:通道的平均像素值
在读取上一节中的图像时,设置了参数‘as_gray = True’,因此在图像中只有一个通道,可以轻松附加像素值。下面删除参数并再次加载图像:
image = imread('puppy.jpeg')
image.shape
(660, 450, 3)
这次,图像尺寸为(660,450,3),其中3为通道数量。可以像之前一样继续创建特征,此时特征数量将是660*450*3 = 891,000。
或者,可以使用另一种方法:
生成一个新矩阵,这个矩阵具有来自三个通道的像素平均值,而不是分别使用三个通道中的像素值。
下图可以让读者更清楚地了解这一思路:
这样一来,特征数量保持不变,并且还能考虑来自图像全部三个通道的像素值。
image = imread('puppy.jpeg')
feature_matrix = np.zeros((660,450))
feature_matrix.shape
(660, 450)
现有一个尺寸为(660×450×3)的三维矩阵,其中660为高度,450为宽度,3是通道数。为获取平均像素值,要使用for循环:
for i in range(0,iimage.shape[0]):
for j in range(0,image.shape[1]):
feature_matrix[i][j] = ((int(image[i,j,0]) + int(image[i,j,1]) + int(image[i,j,2]))/3)
新矩阵具有相同的高度和宽度,但只有一个通道。现在,可以按照与上一节相同的步骤进行操作。依次附加像素值以获得一维数组:
features = np.reshape(feature_matrix, (660*450))
features.shape
(297000,)
方法#3:提取边缘特征
请思考,在下图中,如何识别其中存在的对象:
识别出图中的对象很容易——狗、汽车、还有猫,那么在区分的时候要考虑哪些特征呢?形状是一个重要因素,其次是颜色,或者大小。如果机器也能像这样识别形状会怎么样?
类似的想法是提取边缘作为特征并将其作为模型的输入。稍微考虑一下,要如何识别图像中的边缘呢?边缘一般都是颜色急剧变化的地方,请看下图:
笔者在这里突出了两个边缘。这两处边缘之所以可以被识别是因为在图中,可以分别看到颜色从白色变为棕色,或者由棕色变为黑色。如你所知,图像以数字的形式表示,因此就要寻找哪些像素值发生了剧烈变化。
假设图像矩阵如下:
图片源于机器学习应用课程
该像素两侧的像素值差异很大,于是可以得出结论,该像素处存在显着的转变,因此其为边缘。现在问题又来了,是否一定要手动执行此步骤?
当然不!有各种可用于突出显示图像边缘的内核,刚才讨论的方法也可以使用Prewitt内核(在x方向上)来实现。以下是Prewitt内核:
获取所选像素周围的值,并将其与所选内核(Prewitt内核)相乘,然后可以添加结果值以获得最终值。由于±1已经分别存在于两列之中,因此添加这些值就相当于获取差异。
还有其他各种内核,下面是四种最常用的内核:
图片源于机器学习应用课程
现在回到笔记本,为同一图像生成边缘特征:
#importing the required libraries
import numpy as np
from skimage.io import imread, imshow
from skimage.filters import prewitt_h,prewitt_v
import matplotlib.pyplot as plt
%matplotlib inline
#reading the image
image = imread('puppy.jpeg',as_gray=True)
#calculating horizontal edges using prewitt kernel
edges_prewitt_horizontal = prewitt_h(image)
#calculating vertical edges using prewitt kernel
edges_prewitt_vertical = prewitt_v(image)
imshow(edges_prewitt_vertical, cmap='gray')
㈣ python图像处理代码,望大神详细解释。越详细越好
#初始化一个矩形np.max(marks)+1行,3列,默认值为0
colorTab=np.zeros((np.max(marks)+1,3))
#遍历数组,给每行的3列赋值,就是RGB颜色值,8位的
foriinrange(len(colorTab)):
aa=np.random.uniform(0,255)
bb=np.random.uniform(0,255)
cc=np.random.uniform(0,255)
colorTab[i]=np.array([aa,bb,cc],np.uint8)
#初始化另一个跟img图像形状大小一样的图像,一副黑色图像
bgrImage=np.zeros(img.shape,np.uint8)
#遍历marks形状的行列
foriinrange(marks.shape[0]):
forjinrange(marks.shape[1]):
index=marks[i][j]
#判断是不是区域与区域之间的分界,如果是边界(-1),则使用白色显示
ifindex==-1:
bgrImage[i][j]=np.array([255,255,255])#像素点设置位白色
else:
bgrImage[i][j]=colorTab[index]#像素点设置位上边随机生成的颜色值
#显示处理后的图像图像
cv2.imshow('AfterColorFill',bgrImage)
#总结,先生成一个跟marks相同数量的row*col的一张颜色表,然后创建一个跟marks相同大小的一副黑色图像
#最后对黑色图像画出白色边界和内部随机彩色像素值
㈤ Python实操:手把手教你用Matplotlib把数据画出来
作者:迈克尔·贝耶勒(Michael Beyeler)
如需转载请联系华章 科技
如果已安装Anaconda Python版本,就已经安装好了可以使用的 Matplotlib。否则,可能要访问官网并从中获取安装说明:
http://matplotlib.org
正如使用np作为 NumPy 的缩写,我们将使用一些标准的缩写来表示 Matplotlib 的引入:
在本书中,plt接口会被频繁使用。
让我们创建第一个绘图。
假设想要画出正弦函数sin(x)的线性图。得到函数在x坐标轴上0≤x<10内所有点的值。我们将使用 NumPy 中的 linspace 函数来在x坐标轴上创建一个从0到10的线性空间,以及100个采样点:
可以使用 NumPy 中的sin函数得到所有x点的值,并通过调用plt中的plot函数把结果画出来:
你亲自尝试了吗?发生了什么吗?有没有什么东西出现?
实际情况是,取决于你在哪里运行脚本,可能无法看到任何东西。有下面几种可能性:
1. 从.py脚本中绘图
如果从一个脚本中运行 Matplotlib,需要加上下面的这行调用:
在脚本末尾调用这个函数,你的绘图就会出现!
2. 从 IPython shell 中绘图
这实际上是交互式地执行Matplotlib最方便的方式。为了让绘图出现,需要在启动 IPython 后使用所谓的%matplotlib魔法命令。
接下来,无须每次调用plt.show()函数,所有的绘图将会自动出现。
3. 从 Jupyter Notebook 中绘图
如果你是从基于浏览器的 Jupyter Notebook 中看这段代码,需要使用同样的%matplotlib魔法命令。然而,也可以直接在notebook中嵌入图形,这会有两种输出选项:
在本书中,将会使用inline选项:
现在再次尝试一下:
上面的命令会得到下面的绘图输出结果:
如果想要把绘图保存下来留作以后使用,可以直接在 IPython 或者 Jupyter Notebook 使用下面的命令保存:
仅需要确保你使用了支持的文件后缀,比如.jpg、.png、.tif、.svg、.eps或者.pdf。
作为本章最后一个测试,让我们对外部数据集进行可视化,比如scikit-learn中的数字数据集。
为此,需要三个可视化工具:
那么开始引入这些包吧:
第一步是载入实际数据:
如果没记错的话,digits应该有两个不同的数据域:data域包含了真正的图像数据,target域包含了图像的标签。相对于相信我们的记忆,我们还是应该对digits稍加 探索 。输入它的名字,添加一个点号,然后按Tab键:digits.<TAB>,这个操作将向我们展示digits也包含了一些其他的域,比如一个名为images的域。images和data这两个域,似乎简单从形状上就可以区分。
两种情况中,第一维对应的都是数据集中的图像数量。然而,data中所有像素都在一个大的向量中排列,而images保留了各个图像8×8的空间排列。
因此,如果想要绘制出一副单独的图像,使用images将更加合适。首先,使用NumPy的数组切片从数据集中获取一幅图像:
这里是从1797个元素的数组中获取了它的第一行数据,这行数据对应的是8×8=64个像素。下面就可以使用plt中的imshow函数来绘制这幅图像:
上面的命令得到下面的输出:
此外,这里也使用cmap参数指定了一个颜色映射。默认情况下,Matplotlib 使用MATLAB默认的颜色映射jet。然而,在灰度图像的情况下,gray颜色映射更有效。
最后,可以使用plt的subplot函数绘制全部数字的样例。subplot函数与MATLAB中的函数一样,需要指定行数、列数以及当前的子绘图索引(从1开始计算)。我们将使用for 循环在数据集中迭代出前十张图像,每张图像都分配到一个单独的子绘图中。
这会得到下面的输出结果:
关于作者:Michael Beyeler,华盛顿大学神经工程和数据科学专业的博士后,主攻仿生视觉计算模型,用以为盲人植入人工视网膜(仿生眼睛),改善盲人的视觉体验。 他的工作属于神经科学、计算机工程、计算机视觉和机器学习的交叉领域。同时他也是多个开源项目的积极贡献者。
本文摘编自《机器学习:使用OpenCV和Python进行智能图像处理》,经出版方授权发布。
㈥ python:PIL图像处理
PIL (Python Imaging Library)
Python图像处理库,该库支持多种文件格式,提供强大的图像处理功能。
PIL中最重要的类是Image类,该类在Image模块中定义。
从文件加载图像:
如果成功,这个函数返回一个Image对象。现在你可以使用该对象的属性来探索文件的内容。
format 属性指定了图像文件的格式,如果图像不是从文件中加载的则为 None 。
size 属性是一个2个元素的元组,包含图像宽度和高度(像素)。
mode 属性定义了像素格式,常用的像素格式为:“L” (luminance) - 灰度图, “RGB” , “CMYK”。
如果文件打开失败, 将抛出IOError异常。
一旦你拥有一个Image类的实例,你就可以用该类定义的方法操作图像。比如:显示
( show() 的标准实现不是很有效率,因为它将图像保存到一个临时文件,然后调用外部工具(比如系统的默认图片查看软件)显示图像。该函数将是一个非常方便的调试和测试工具。)
接下来的部分展示了该库提供的不同功能。
PIL支持多种图像格式。从磁盘中读取文件,只需使用 Image 模块中的 open 函数。不需要提供文件的图像格式。PIL库将根据文件内容自动检测。
如果要保存到文件,使用 Image 模块中的 save 函数。当保存文件时,文件名很重要,除非指定格式,否则PIL库将根据文件的扩展名来决定使用哪种格式保存。
** 转换文件到JPEG **
save 函数的第二个参数可以指定使用的文件格式。如果文件名中使用了一个非标准的扩展名,则必须通过第二个参数来指定文件格式。
** 创建JPEG缩略图 **
需要注意的是,PIL只有在需要的时候才加载像素数据。当你打开一个文件时,PIL只是读取文件头获得文件格式、图像模式、图像大小等属性,而像素数据只有在需要的时候才会加载。
这意味着打开一个图像文件是一个非常快的操作,不会受文件大小和压缩算法类型的影响。
** 获得图像信息 **
Image 类提供了某些方法,可以操作图像的子区域。提取图像的某个子区域,使用 crop() 函数。
** 复制图像的子区域 **
定义区域使用一个包含4个元素的元组,(left, upper, right, lower)。坐标原点位于左上角。上面的例子提取的子区域包含300x300个像素。
该区域可以做接下来的处理然后再粘贴回去。
** 处理子区域然后粘贴回去 **
当往回粘贴时,区域的大小必须和参数匹配。另外区域不能超出图像的边界。然而原图像和区域的颜色模式无需匹配。区域会自动转换。
** 滚动图像 **
paste() 函数有个可选参数,接受一个掩码图像。掩码中255表示指定位置为不透明,0表示粘贴的图像完全透明,中间的值表示不同级别的透明度。
PIL允许分别操作多通道图像的每个通道,比如RGB图像。 split() 函数创建一个图像集合,每个图像包含一个通道。 merge() 函数接受一个颜色模式和一个图像元组,然后将它们合并为一个新的图像。接下来的例子交换了一个RGB图像的三个通道。
** 分离和合并图像通道 **
对于单通道图像, split() 函数返回图像本身。如果想处理各个颜色通道,你可能需要先将图像转为RGB模式。
resize() 函数接受一个元组,指定图像的新大小。
rotate() 函数接受一个角度值,逆时针旋转。
** 基本几何变换 **
图像旋转90度也可以使用 transpose() 函数。 transpose() 函数也可以水平或垂直翻转图像。
** transpose **
transpose() 和 rotate() 函数在性能和结果上没有区别。
更通用的图像变换函数为 transform() 。
PIL可以转换图像的像素模式。
** 转换颜色模式 **
PIL库支持从其他模式转为“L”或“RGB”模式,其他模式之间转换,则需要使用一个中间图像,通常是“RGB”图像。
ImageFilter 模块包含多个预定义的图像增强过滤器用于 filter() 函数。
** 应用过滤器 **
point() 函数用于操作图像的像素值。该函数通常需要传入一个函数对象,用于操作图像的每个像素:
** 应用点操作 **
使用以上技术可以快速地对图像像素应用任何简单的表达式。可以结合 point() 函数和 paste 函数修改图像。
** 处理图像的各个通道 **
注意用于创建掩码图像的语法:
Python计算逻辑表达式采用短路方式,即:如果and运算符左侧为false,就不再计算and右侧的表达式,而且返回结果是表达式的结果。比如 a and b 如果a为false则返回a,如果a为true则返回b,详见Python语法。
对于更多高级的图像增强功能,可以使用 ImageEnhance 模块中的类。
可以调整图像对比度、亮度、色彩平衡、锐度等。
** 增强图像 **
PIL库包含对图像序列(动画格式)的基本支持。支持的序列格式包括 FLI/FLC 、 GIF 和一些实验性的格式。 TIFF 文件也可以包含多个帧。
当打开一个序列文件时,PIL库自动加载第一帧。你可以使用 seek() 函数 tell() 函数在不同帧之间移动。
** 读取序列 **
如例子中展示的,当序列到达结尾时,将抛出EOFError异常。
注意当前版本的库中多数底层驱动只允许seek到下一帧。如果想回到前面的帧,只能重新打开图像。
以下迭代器类允许在for语句中循环遍历序列:
** 一个序列迭代器类 **
PIL库包含一些函数用于将图像、文本打印到Postscript打印机。以下是一个简单的例子。
** 打印到Postscript **
如前所述,可以使用 open() 函数打开图像文件,通常传入一个文件名作为参数:
如果打开成功,返回一个Image对象,否则抛出IOError异常。
也可以使用一个file-like object代替文件名(暂可以理解为文件句柄)。该对象必须实现read,seek,tell函数,必须以二进制模式打开。
** 从文件句柄打开图像 **
如果从字符串数据中读取图像,使用StringIO类:
** 从字符串中读取 **
如果图像文件内嵌在一个大文件里,比如 tar 文件中。可以使用ContainerIO或TarIO模块来访问。
** 从tar文档中读取 **
** 该小节不太理解,请参考原文 **
有些解码器允许当读取文件时操作图像。通常用于在创建缩略图时加速解码(当速度比质量重要时)和输出一个灰度图到激光打印机时。
draft() 函数。
** Reading in draft mode **
输出类似以下内容:
注意结果图像可能不会和请求的模式和大小匹配。如果要确保图像不大于指定的大小,请使用 thumbnail 函数。
Python2.7 教程 PIL
http://www.liaoxuefeng.com/wiki//
Python 之 使用 PIL 库做图像处理
http://www.cnblogs.com/way_testlife/archive/2011/04/17/2019013.html
来自 http://effbot.org/imagingbook/introction.htm
㈦ 请介绍哈,关于图像的基本知识,像素,像素的四邻接 8邻接 连通性 邻接性 这方面的达人来哈
首先邻域的概念有4邻域,8邻域之分。其中8邻域=4邻域+对角邻域。
邻接:两个像素接触,则它们是邻接的。一个像素和它的邻域中的像素是接触的。邻接仅考虑像素的空间关系。
连接:(1)是邻接的。(2)灰度值(或其他属性)满足某个特定的相似准则(灰度相等或在某个集合中等条件)。
这样我们就有了4-连接,8-连接和m-连接的概念,这些概念我在上图像处理课的时候理解的不好,这里详细讲一下。
(1)4-连接:2个像素p和r在灰度集合V中取值且r在N4(p)---p的4邻域中。
(2)8-连接:概念类似(1)。
(3)m-连接:也叫混合连接,2个像素p和r在灰度集合V中取值且满足<1>r在N4(p)中;<2>r在Nd(p)中且N4(p)与N4(r)的交集元素不在V中。
“混合连接实质上是在像素间同时存在4-连接和8-连接时,优先采用4-连接,并屏蔽两个和同一像素间存在4-连接的像素之间的8-连接。”这是《图像工程》中的原话,我觉得对m-连接的概念讲得比较好理解,而且印象深刻。
说来也好理解,这种m-连接的引入目的之一就是消除8-连接的多路问题。8-连接在像素距离的选择时有多种路径,引发歧义,而m-连接则没有。
连通:说白了和图里的节点连通性道理一样。就是两个像素之间,如果有一条通路能把它们连接起来,那么就是连通的了。当然,连接是连通的一种特例,就是在两个邻近的像素之间的连通。对应连接的概念,连通也分4-连通和8-连通。
在像素的邻接和连通定义我们都熟知后,其实还有比较复杂点的概念引入,那就是像素集合的邻接和连通。如果把一幅图像看做是所有像素的集合,那么根据像素间的关系则可把像素结合成图像的子集合。那么显然这些子集也满足像图像像素元素那样的连通和连接性质(这个应该可以归纳证明的~~这里偷个懒吧囧)。对图像子集S中的任何一个像素p,所有和p相连通又在S中的像素的集合合起来称为S中的一个连通组元。如果S只有一个连通组元,即S中所有像素都互相连通,那么S就是一个连通集。如果一幅图像的所有像素都分属于几个连通集,则可以说这几个连通集是整个图像的连通组元。图像里的每个连通集构成图像的一个区域,这样我们就引入了区域的概念。
㈧ 数字图像处理中四连通为什么一定八连通
上面的图分别表示四邻域、对角邻域、八邻域,而4-连接的定义是:2个象素 p 和 r 在V 中取值且 r 在N4(p)中,8-连接的定义是:2个象素 p 和 r 在V 中取值且 r 在N8(p)中。
所以四连通是特殊的八连通。