Ⅰ python转换成exe后,原先的打印输出如何看到
不要直接运行exe程序,
而是cmd打开命令提示符,然后在里面运行程序,这样窗口就不会关闭。
Ⅱ 初学Python,下面怎么输出结果
要输出even变量和odd变量的结果,用下面两条语句:
print(even)
print(odd)
print是一个输出函数,可以输出任何变量的值。
Ⅲ python 的运算结果怎样输出
你提问的是关于运算结果的输出,在python2.x中,可以使用print声明。在python3.x中,可以使用print内置函数(对象)。
比如,在python3中。你可以这样:
print(1+1)
a=1
b=1
print(a+b)
a=-1
b=2
print(a+b)
a=2.5
b=1.5
print(a+b)
a=5.5
print(-a)
a=5.5
b=3
print(a**b)
a=3
a+=1
print(a)
a=85.5
b=35.25
print(divmod(a,b))
python是一门很灵活的语言,它本身可以当成一个计算器。
个人建议:
先学会使用python的内置函数,然后慢慢掌握。
注:python有很多的第三方库,可以通过pip进行安装或通过提供第三方库的站点下载安装。使用别人的成果可以更快的进行开发,以后等你熟练后可以自己开发第三方库。
纯手工,如果对你有帮助望采纳!
Ⅳ python if判断后怎么看不到打印输出结果
你这是 代码缩进问题
新建一个 .py 文件 把你的代码 放到文件里面去
然后执行这个文件
就可以正常输出了
Ⅳ python 函数返回值返回到哪里
python 函数返回值有两种形式: 1 返回一个值。 2 返回多个值。 现看看返回一个值的吧。
def firstvalue(a,b):
c = a + b
return c
print firstvalue(1,2)结果:3
再看看返回多个值的: 那怎么可以返回多个值呢,其他的语言一般调用函数的话,只能返回一个值,可能我不太熟悉所有的语言,我知道的语言只能返回一个值,而python可以返回多个值,感觉非常方便,发代码看下:
def secondvalue(a,b):
c = a + b
return (a,b,c)
x,y,z = secondvalue(1,2)
print 'x:',x,'y:',y,'z:',z
可能上面的东西写的有点简单,但是有的细节处理也很重要。顺便分享下我如何学习python的经历把,大家没事拍拍砖。
Ⅵ 在win下要如何让python的输出结果显示在gvim中的分割窗口中,而不是跳出一个cmd窗口
#include "stdio.h"
#include "conio.h"
main()
{
int i,j,k;
printf("\n");
for(i=1;i<5;i++) /*以下为三重循环*/
for(j=1;j<5;j++)
for (k=1;k<5;k++)
{
if (i!=k&&i!=j&&j!=k) /*确保i、j、k三位互不相同*/
printf("%d,%d,%d\n",i,j,k);
}
getch();
}
Ⅶ python怎么把查询结果输出出来
试试这个fetchone函数
conn=MySQLdb.connect(host='localhost',user='root',passwd='root',db='test',port=3306)
cur=conn.cursor()
cur.execute('select * from user')
data = cur.fetchone()
print "Database : %s " % data
conn.commit()
cur.close()
conn.close()
Ⅷ 请问大佬们Python如何输出这个结果
这个如何输出这个结果,这个你可以到设置里面去找一下,应该有可以输出键,点一下就可以输出了。
Ⅸ python pandas怎么输出结果
本文是对pandas官方网站上《10 Minutes to pandas》的一个简单的翻译,原文在这里。这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook 。习惯上,我们会按下面格式引入所需要的包:
一、 创建对象
可以通过 Data Structure Intro Setion 来查看有关该节内容的详细信息。
1、可以通过传递一个list对象来创建一个Series,pandas会默认创建整型索引:
2、通过传递一个numpy array,时间索引以及列标签来创建一个DataFrame:
3、通过传递一个能够被转换成类似序列结构的字典对象来创建一个DataFrame:
4、查看不同列的数据类型:
5、如果你使用的是IPython,使用Tab自动补全功能会自动识别所有的属性以及自定义的列,下图中是所有能够被自动识别的属性的一个子集:
二、 查看数据
详情请参阅:Basics Section
1、 查看frame中头部和尾部的行:
2、 显示索引、列和底层的numpy数据:
3、 describe()函数对于数据的快速统计汇总:
4、 对数据的转置:
5、 按轴进行排序
6、 按值进行排序
三、 选择
虽然标准的Python/Numpy的选择和设置表达式都能够直接派上用场,但是作为工程使用的代码,我们推荐使用经过优化的pandas数据访问方式: .at, .iat, .loc, .iloc 和 .ix详情请参阅Indexing and Selecing Data 和 MultiIndex / Advanced Indexing。
l 获取
1、 选择一个单独的列,这将会返回一个Series,等同于df.A:
2、 通过[]进行选择,这将会对行进行切片
l 通过标签选择
1、 使用标签来获取一个交叉的区域
2、 通过标签来在多个轴上进行选择
3、 标签切片
4、 对于返回的对象进行维度缩减
5、 获取一个标量
6、 快速访问一个标量(与上一个方法等价)
l 通过位置选择
1、 通过传递数值进行位置选择(选择的是行)
2、 通过数值进行切片,与numpy/python中的情况类似
3、 通过指定一个位置的列表,与numpy/python中的情况类似
4、 对行进行切片
5、 对列进行切片
6、 获取特定的值
l 布尔索引
1、 使用一个单独列的值来选择数据:
2、 使用where操作来选择数据:
3、 使用isin()方法来过滤:
l 设置
1、 设置一个新的列:
2、 通过标签设置新的值:
3、 通过位置设置新的值:
4、 通过一个numpy数组设置一组新值:
上述操作结果如下:
5、 通过where操作来设置新的值:
四、 缺失值处理
在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中,详情请参阅:Missing Data Section。
1、 reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝:、
2、 去掉包含缺失值的行:
3、 对缺失值进行填充:
4、 对数据进行布尔填充:
五、 相关操作
详情请参与 Basic Section On Binary Ops
统计(相关操作通常情况下不包括缺失值)
1、 执行描述性统计:
2、 在其他轴上进行相同的操作:
3、 对于拥有不同维度,需要对齐的对象进行操作。Pandas会自动的沿着指定的维度进行广播:
Apply
1、 对数据应用函数:
直方图
具体请参照:Histogramming and Discretization
字符串方法
Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素,如下段代码所示。更多详情请参考:Vectorized String Methods.
六、 合并
Pandas提供了大量的方法能够轻松的对Series,DataFrame和Panel对象进行各种符合各种逻辑关系的合并操作。具体请参阅:Merging section
Concat
Join 类似于SQL类型的合并,具体请参阅:Database style joining
Append 将一行连接到一个DataFrame上,具体请参阅Appending:
七、 分组
对于”group by”操作,我们通常是指以下一个或多个操作步骤:
(Splitting)按照一些规则将数据分为不同的组;
(Applying)对于每组数据分别执行一个函数;
(Combining)将结果组合到一个数据结构中;
详情请参阅:Grouping section
1、 分组并对每个分组执行sum函数:
2、 通过多个列进行分组形成一个层次索引,然后执行函数:
八、 Reshaping
详情请参阅 Hierarchical Indexing 和 Reshaping。
Stack
数据透视表,详情请参阅:Pivot Tables.
可以从这个数据中轻松的生成数据透视表:
九、 时间序列
Pandas在对频率转换进行重新采样时拥有简单、强大且高效的功能(如将按秒采样的数据转换为按5分钟为单位进行采样的数据)。这种操作在金融领域非常常见。具体参考:Time Series section。
1、 时区表示:
2、 时区转换:
3、 时间跨度转换:
4、 时期和时间戳之间的转换使得可以使用一些方便的算术函数。
十、 Categorical
从0.15版本开始,pandas可以在DataFrame中支持Categorical类型的数据,详细 介绍参看:categorical introction和API documentation。
1、 将原始的grade转换为Categorical数据类型:
2、 将Categorical类型数据重命名为更有意义的名称:
3、 对类别进行重新排序,增加缺失的类别:
4、 排序是按照Categorical的顺序进行的而不是按照字典顺序进行:
5、 对Categorical列进行排序时存在空的类别:
十一、 画图
具体文档参看:Plotting docs
对于DataFrame来说,plot是一种将所有列及其标签进行绘制的简便方法:
十二、 导入和保存数据
CSV,参考:Writing to a csv file
1、 写入csv文件:
2、 从csv文件中读取:
HDF5,参考:HDFStores
1、 写入HDF5存储:
2、 从HDF5存储中读取:
Excel,参考:MS Excel
1、 写入excel文件:
2、 从excel文件中读取:
来自为知笔记(Wiz)
Ⅹ python 线性回归 linregress 输出结果怎么看
import MySQLdb try: conn=MySQLdb.connect(host='localhost',user='roo...
答:试试这个fetchone函数 conn=MySQLdb.connect(host='localhost',user='root',passwd='root',db='test',port=3306) cur=conn.cursor() cur.execute('select * from user') data = cur.fetchone() print "Database : %s " % data conn.commit() cur.