导航:首页 > 编程语言 > 爬虫python能看答案吗

爬虫python能看答案吗

发布时间:2022-10-11 22:52:28

A. 如何从零基础开始写一个关于搜索知乎答案的python爬虫

首先来说爬虫。
关于爬虫一个不太严谨的理解就是,你可以给爬虫程序设定一个初始的目标页面,然后程序返回目标页面的HTML文档后,从中提取页面中的超链接,然后继续爬到下一个页面中去。从这些页面的HTML文档中可以通过对标签的处理解析出你想要的具体内容。

所以我们可以这么来简单定义一个爬虫的工作过程:
抓取目标页面
解析页面文档获得目的信息
继续爬取下一个页面
存储结果

为了实现这些工作,你需要学习一些常用库的简单用法,包括但不限于:
urllib、urllib2、urllib.request、cookilib (Python的内置库,用来处理HTTP请求)
requests (第三方库,推荐使用requests来处理请求,比urllib方便一些)
re、beautifulsoup (正则表达式匹配内容、bs4解析html文档)

其次呢,因为你要跟网页的源码打交道,尤其是解析HTML文档,所以你最好对HTML和浏览器通信有点简单的了解,会使用Firebug查看源码定位信息在源码中的位置。

落实到题主给出的示例
http://www.hu.com/topic/19554091/questions?page=1

这是知乎数学话题全部问题的URL构成。可以看到我们只要修改最后的数字就可以访问到不同的页数。
数学话题下一共有1254页。所以你可以通过简单的对page做循环遍历获得所有问题。
(这种做法是直接构造了地址,或者你可以在爬取每一页以后从页面中得到下一页的链接,这样更像是一个爬虫)

B. python网络爬虫可以干什么

C. python爬虫能干什么

python爬虫就是模拟浏览器打开网页,获取网页中想要的那部分数据。利用爬虫我们可以抓取商品信息、评论及销量数据;可以抓取房产买卖及租售信息;可以抓取各类职位信息等。

爬虫:

网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。另外一些不常使用的名字还有蚂蚁、自动索引、模拟程序或者蠕虫。

(推荐教程:Python入门教程)

通俗的讲就是通过程序去获取web页面上自己想要的数据,也就是自动抓取数据。

python爬虫能做什么?

从技术层面来说就是通过程序模拟浏览器请求站点的行为,把站点返回的HTML代码/JSON数据/二进制数据(图片、视频) 爬到本地,进而提取自己需要的数据存放起来使用。

利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,比如:

爬取知乎优质答案,为你筛选出各话题下最优质的内容。

抓取淘宝、京东商品、评论及销量数据,对各种商品及用户的消费场景进行分析。

抓取房产买卖及租售信息,分析房价变化趋势、做不同区域的房价分析。

爬取各类职位信息,分析各行业人才需求情况及薪资水平。

爬虫的本质:

爬虫的本质就是模拟浏览器打开网页,获取网页中我们想要的那部分数据。

D. 如何入门 Python 爬虫

“入门”是良好的动机,但是可能作用缓慢。如果你手里或者脑子里有一个项目,那么实践起来你会被目标驱动,而不会像学习模块一样慢慢学习。
另外如果说知识体系里的每一个知识点是图里的点,依赖关系是边的话,那么这个图一定不是一个有向无环图。因为学习A的经验可以帮助你学习B。因此,你不需要学习怎么样“入门”,因为这样的“入门”点根本不存在!你需要学习的是怎么样做一个比较大的东西,在这个过程中,你会很快地学会需要学会的东西的。当然,你可以争论说需要先懂python,不然怎么学会python做爬虫呢?但是事实上,你完全可以在做这个爬虫的过程中学习python :D看到前面很多答案都讲的“术”——用什么软件怎么爬,那我就讲讲“道”和“术”吧——爬虫怎么工作以及怎么在python实现。
先长话短说总结一下。你需要学习:
基本的爬虫工作原理
基本的http抓取工具,scrapy
Bloom Filter: Bloom
如果需要大规模网页抓取,你需要学习分布式爬虫的概念。其实没那么玄乎,你只要学会怎样维护一个所有集群机器能够有效分享的分布式队列就好。最简单的实现是python-rq: https: //github.com /nvie/rqrq和Scrapy的结合:darkrho/scrapy-redis · GitHub后续处理,网页析取(grangier/python-goose · GitHub),存储(Mongodb)以下是短话长说。说说当初写的一个集群爬下整个豆瓣的经验吧。
1)首先你要明白爬虫怎样工作
想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。
在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。
突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。
好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。
那么在python里怎么实现呢?很简单:
Python
import Queue
initial_page = "http:/ /www. renminribao. com"url_queue = Queue.Queue()seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直进行直到海枯石烂
if url_queue.size()>0:
current_url = url_queue.get() #拿出队例中第一个的urlstore(current_url) #把这个url代表的网页存储好for next_url in extract_urls(current_url): #提取把这个url里链向的urlif next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
import Queue
initial_page = "http:/ / www.renminribao .com"url_queue = Queue.Queue()seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直进行直到海枯石烂
if url_queue.size()>0:
current_url = url_queue.get() #拿出队例中第一个的urlstore(current_url) #把这个url代表的网页存储好for next_url in extract_urls(current_url): #提取把这个url里链向的urlif next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
写得已经很伪代码了。
所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。
2)效率
如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。
问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。
通常的判重做法是怎样呢?Bloom Filter。简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]
好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。
3)集群化抓取
爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了…那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?
我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)考虑如何用python实现:
在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。
代码于是写成:
Python
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www. renmingribao .com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www. renmingribao .com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub4)展望及后处理虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。
但是如果附加上你需要这些后续处理,比如
有效地存储(数据库应该怎样安排)
有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛…及时更新(预测这个网页多久会更新一次)如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,“路漫漫其修远兮,吾将上下而求索”。

E. python爬虫一般都爬什么信息

python爬虫一般都爬什么信息?
一般说爬虫的时候,大部分程序员潜意识里都会联想为Python爬虫,为什么会这样,我觉得有两个原因:
1.Python生态极其丰富,诸如Request、Beautiful Soup、Scrapy、PySpider等第三方库实在强大
2.Python语法简洁易上手,分分钟就能写出一个爬虫(有人吐槽Python慢,但是爬虫的瓶颈和语言关系不大)
爬虫是一个程序,这个程序的目的就是为了抓取万维网信息资源,比如你日常使用的谷歌等搜索引擎,搜索结果就全都依赖爬虫来定时获取
看上述搜索结果,除了wiki相关介绍外,爬虫有关的搜索结果全都带上了Python,前人说Python爬虫,现在看来果然诚不欺我~
爬虫的目标对象也很丰富,不论是文字、图片、视频,任何结构化非结构化的数据爬虫都可以爬取,爬虫经过发展,也衍生出了各种爬虫类型:
● 通用网络爬虫:爬取对象从一些种子 URL 扩充到整个 Web,搜索引擎干的就是这些事
● 垂直网络爬虫:针对特定领域主题进行爬取,比如专门爬取小说目录以及章节的垂直爬虫
● 增量网络爬虫:对已经抓取的网页进行实时更新
● 深层网络爬虫:爬取一些需要用户提交关键词才能获得的 Web 页面
不想说这些大方向的概念,让我们以一个获取网页内容为例,从爬虫技术本身出发,来说说网页爬虫,步骤如下:
模拟请求网页资源
从HTML提取目标元素
数据持久化
相关推荐:《Python教程》以上就是小编分享的关于python爬虫一般都爬什么信息的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!

阅读全文

与爬虫python能看答案吗相关的资料

热点内容
android天气apijson 浏览:982
为什么创建id会出现服务器错误 浏览:835
代码中有不必编译的单词吗 浏览:563
钩子与数据库编程 浏览:563
安卓光遇录歌怎么设置 浏览:485
虚拟机怎么和云服务器搭建集群 浏览:896
python倒计时代码turtle 浏览:491
cad命令mv 浏览:928
nexus7一代androidl 浏览:306
linux使用静态库编译过程 浏览:103
android平滑滚动效果 浏览:841
什么是编译器指令 浏览:219
微控制器逻辑命令使用什么总线 浏览:887
程序员在学校里是学什么的 浏览:604
oraclejava数据类型 浏览:890
程序员考注册会计师 浏览:957
怎么使用access的命令按钮 浏览:899
有点钱app在哪里下载 浏览:832
博途v15解压后无法安装 浏览:205
什么是根服务器主机 浏览:438