1. 万字干货,python语法大合集,一篇文章带你入门
这份资料非常纯粹,只有Python的基础语法,专门针对想要学习Python的小白。
Python中用#表示单行注释,#之后的同行的内容都会被注释掉。
使用三个连续的双引号表示多行注释,两个多行注释标识之间内容会被视作是注释。
Python当中的数字定义和其他语言一样:
我们分别使用+, -, *, /表示加减乘除四则运算符。
这里要注意的是,在Python2当中,10/3这个操作会得到3,而不是3.33333。因为除数和被除数都是整数,所以Python会自动执行整数的计算,帮我们把得到的商取整。如果是10.0 / 3,就会得到3.33333。目前Python2已经不再维护了,可以不用关心其中的细节。
但问题是Python是一个 弱类型 的语言,如果我们在一个函数当中得到两个变量,是无法直接判断它们的类型的。这就导致了同样的计算符可能会得到不同的结果,这非常蛋疼。以至于程序员在运算除法的时候,往往都需要手工加上类型转化符,将被除数转成浮点数。
在Python3当中拨乱反正,修正了这个问题,即使是两个整数相除,并且可以整除的情况下,得到的结果也一定是浮点数。
如果我们想要得到整数,我们可以这么操作:
两个除号表示 取整除 ,Python会为我们保留去除余数的结果。
除了取整除操作之外还有取余数操作,数学上称为取模,Python中用%表示。
Python中支持 乘方运算 ,我们可以不用调用额外的函数,而使用**符号来完成:
当运算比较复杂的时候,我们可以用括号来强制改变运算顺序。
Python中用首字母大写的True和False表示真和假。
用and表示与操作,or表示或操作,not表示非操作。而不是C++或者是java当中的&&, || 和!。
在Python底层, True和False其实是1和0 ,所以如果我们执行以下操作,是不会报错的,但是在逻辑上毫无意义。
我们用==判断相等的操作,可以看出来True==1, False == 0.
我们要小心Python当中的bool()这个函数,它并不是转成bool类型的意思。如果我们执行这个函数,那么 只有0会被视作是False,其他所有数值都是True :
Python中用==判断相等,>表示大于,>=表示大于等于, <表示小于,<=表示小于等于,!=表示不等。
我们可以用and和or拼装各个逻辑运算:
注意not,and,or之间的优先级,其中not > and > or。如果分不清楚的话,可以用括号强行改变运行顺序。
关于list的判断,我们常用的判断有两种,一种是刚才介绍的==,还有一种是is。我们有时候也会简单实用is来判断,那么这两者有什么区别呢?我们来看下面的例子:
Python是全引用的语言,其中的对象都使用引用来表示。is判断的就是 两个引用是否指向同一个对象 ,而==则是判断两个引用指向的具体内容是否相等。举个例子,如果我们把引用比喻成地址的话,is就是判断两个变量的是否指向同一个地址,比如说都是沿河东路XX号。而==则是判断这两个地址的收件人是否都叫张三。
显然,住在同一个地址的人一定都叫张三,但是住在不同地址的两个人也可以都叫张三,也可以叫不同的名字。所以如果a is b,那么a == b一定成立,反之则不然。
Python当中对字符串的限制比较松, 双引号和单引号都可以表示字符串 ,看个人喜好使用单引号或者是双引号。我个人比较喜欢单引号,因为写起来方便。
字符串也支持+操作,表示两个字符串相连。除此之外,我们把两个字符串写在一起,即使没有+,Python也会为我们拼接:
我们可以使用[]来查找字符串当中某个位置的字符,用 len 来计算字符串的长度。
我们可以在字符串前面 加上f表示格式操作 ,并且在格式操作当中也支持运算,比如可以嵌套上len函数等。不过要注意,只有Python3.6以上的版本支持f操作。
最后是None的判断,在Python当中None也是一个对象, 所有为None的变量都会指向这个对象 。根据我们前面所说的,既然所有的None都指向同一个地址,我们需要判断一个变量是否是None的时候,可以使用is来进行判断,当然用==也是可以的,不过我们通常使用is。
理解了None之后,我们再回到之前介绍过的bool()函数,它的用途其实就是判断值是否是空。所有类型的 默认空值会被返回False ,否则都是True。比如0,"",[], {}, ()等。
除了上面这些值以外的所有值传入都会得到True。
Python当中的标准输入输出是 input和print 。
print会输出一个字符串,如果传入的不是字符串会自动调用__str__方法转成字符串进行输出。 默认输出会自动换行 ,如果想要以不同的字符结尾代替换行,可以传入end参数:
使用input时,Python会在命令行接收一行字符串作为输入。可以在input当中传入字符串,会被当成提示输出:
Python支持 三元表达式 ,但是语法和C++不同,使用if else结构,写成:
上段代码等价于:
Python中用[]表示空的list,我们也可以直接在其中填充元素进行初始化:
使用append和pop可以在list的末尾插入或者删除元素:
list可以通过[]加上下标访问指定位置的元素,如果是负数,则表示 倒序访问 。-1表示最后一个元素,-2表示倒数第二个,以此类推。如果访问的元素超过数组长度,则会出发 IndexError 的错误。
list支持切片操作,所谓的切片则是从原list当中 拷贝 出指定的一段。我们用start: end的格式来获取切片,注意,这是一个 左闭右开区间 。如果留空表示全部获取,我们也可以额外再加入一个参数表示步长,比如[1:5:2]表示从1号位置开始,步长为2获取元素。得到的结果为[1, 3]。如果步长设置成-1则代表反向遍历。
如果我们要指定一段区间倒序,则前面的start和end也需要反过来,例如我想要获取[3: 6]区间的倒序,应该写成[6:3:-1]。
只写一个:,表示全部拷贝,如果用is判断拷贝前后的list会得到False。可以使用del删除指定位置的元素,或者可以使用remove方法。
insert方法可以 指定位置插入元素 ,index方法可以查询某个元素第一次出现的下标。
list可以进行加法运算,两个list相加表示list当中的元素合并。 等价于使用extend 方法:
我们想要判断元素是否在list中出现,可以使用 in关键字 ,通过使用len计算list的长度:
tuple和list非常接近,tuple通过()初始化。和list不同, tuple是不可变对象 。也就是说tuple一旦生成不可以改变。如果我们修改tuple,会引发TypeError异常。
由于小括号是有改变优先级的含义,所以我们定义单个元素的tuple, 末尾必须加上逗号 ,否则会被当成是单个元素:
tuple支持list当中绝大部分操作:
我们可以用多个变量来解压一个tuple:
解释一下这行代码:
我们在b的前面加上了星号, 表示这是一个list 。所以Python会在将其他变量对应上值的情况下,将剩下的元素都赋值给b。
补充一点,tuple本身虽然是不可变的,但是 tuple当中的可变元素是可以改变的 。比如我们有这样一个tuple:
我们虽然不能往a当中添加或者删除元素,但是a当中含有一个list,我们可以改变这个list类型的元素,这并不会触发tuple的异常:
dict也是Python当中经常使用的容器,它等价于C++当中的map,即 存储key和value的键值对 。我们用{}表示一个dict,用:分隔key和value。
对 。我们用{}表示一个dict,用:分隔key和value。
dict的key必须为不可变对象,所以 list、set和dict不可以作为另一个dict的key ,否则会抛出异常:
我们同样用[]查找dict当中的元素,我们传入key,获得value,等价于get方法。
我们可以call dict当中的keys和values方法,获取dict当中的所有key和value的集合,会得到一个list。在Python3.7以下版本当中,返回的结果的顺序可能和插入顺序不同,在Python3.7及以上版本中,Python会保证返回的顺序和插入顺序一致:
我们也可以用in判断一个key是否在dict当中,注意只能判断key。
如果使用[]查找不存在的key,会引发KeyError的异常。如果使用 get方法则不会引起异常,只会得到一个None :
setdefault方法可以 为不存在的key 插入一个value,如果key已经存在,则不会覆盖它:
我们可以使用update方法用另外一个dict来更新当前dict,比如a.update(b)。对于a和b交集的key会被b覆盖,a当中不存在的key会被插入进来:
我们一样可以使用del删除dict当中的元素,同样只能传入key。
Python3.5以上的版本支持使用**来解压一个dict:
set是用来存储 不重复元素 的容器,当中的元素都是不同的,相同的元素会被删除。我们可以通过set(),或者通过{}来进行初始化。注意当我们使用{}的时候,必须要传入数据,否则Python会将它和dict弄混。
set当中的元素也必须是不可变对象,因此list不能传入set。
可以调用add方法为set插入元素:
set还可以被认为是集合,所以它还支持一些集合交叉并补的操作。
set还支持 超集和子集的判断 ,我们可以用大于等于和小于等于号判断一个set是不是另一个的超集或子集:
和dict一样,我们可以使用in判断元素在不在set当中。用可以拷贝一个set。
Python当中的判断语句非常简单,并且Python不支持switch,所以即使是多个条件,我们也只能 罗列if-else 。
我们可以用in来循环迭代一个list当中的内容,这也是Python当中基本的循环方式。
如果我们要循环一个范围,可以使用range。range加上一个参数表示从0开始的序列,比如range(10),表示[0, 10)区间内的所有整数:
如果我们传入两个参数,则 代表迭代区间的首尾 。
如果我们传入第三个元素,表示每次 循环变量自增的步长 。
如果使用enumerate函数,可以 同时迭代一个list的下标和元素 :
while循环和C++类似,当条件为True时执行,为false时退出。并且判断条件不需要加上括号:
Python当中使用 try和except捕获异常 ,我们可以在except后面限制异常的类型。如果有多个类型可以写多个except,还可以使用else语句表示其他所有的类型。finally语句内的语法 无论是否会触发异常都必定执行 :
在Python当中我们经常会使用资源,最常见的就是open打开一个文件。我们 打开了文件句柄就一定要关闭 ,但是如果我们手动来编码,经常会忘记执行close操作。并且如果文件异常,还会触发异常。这个时候我们可以使用with语句来代替这部分处理,使用with会 自动在with块执行结束或者是触发异常时关闭打开的资源 。
以下是with的几种用法和功能:
凡是可以使用in语句来迭代的对象都叫做 可迭代对象 ,它和迭代器不是一个含义。这里只有可迭代对象的介绍,想要了解迭代器的具体内容,请移步传送门:
Python——五分钟带你弄懂迭代器与生成器,夯实代码能力
当我们调用dict当中的keys方法的时候,返回的结果就是一个可迭代对象。
我们 不能使用下标来访问 可迭代对象,但我们可以用iter将它转化成迭代器,使用next关键字来获取下一个元素。也可以将它转化成list类型,变成一个list。
使用def关键字来定义函数,我们在传参的时候如果指定函数内的参数名, 可以不按照函数定义的顺序 传参:
可以在参数名之前加上*表示任意长度的参数,参数会被转化成list:
也可以指定任意长度的关键字参数,在参数前加上**表示接受一个dict:
当然我们也可以两个都用上,这样可以接受任何参数:
传入参数的时候我们也可以使用*和**来解压list或者是dict:
Python中的参数 可以返回多个值 :
函数内部定义的变量即使和全局变量重名,也 不会覆盖全局变量的值 。想要在函数内部使用全局变量,需要加上 global 关键字,表示这是一个全局变量:
Python支持 函数式编程 ,我们可以在一个函数内部返回一个函数:
Python中可以使用lambda表示 匿名函数 ,使用:作为分隔,:前面表示匿名函数的参数,:后面的是函数的返回值:
我们还可以将函数作为参数使用map和filter,实现元素的批量处理和过滤。关于Python中map、rece和filter的使用,具体可以查看之前的文章:
五分钟带你了解map、rece和filter
我们还可以结合循环和判断语来给list或者是dict进行初始化:
使用 import语句引入一个Python模块 ,我们可以用.来访问模块中的函数或者是类。
我们也可以使用from import的语句,单独引入模块内的函数或者是类,而不再需要写出完整路径。使用from import *可以引入模块内所有内容(不推荐这么干)
可以使用as给模块内的方法或者类起别名:
我们可以使用dir查看我们用的模块的路径:
这么做的原因是如果我们当前的路径下也有一个叫做math的Python文件,那么 会覆盖系统自带的math的模块 。这是尤其需要注意的,不小心会导致很多奇怪的bug。
我们来看一个完整的类,相关的介绍都在注释当中
以上内容的详细介绍之前也有过相关文章,可以查看:
Python—— slots ,property和对象命名规范
下面我们来看看Python当中类的使用:
这里解释一下,实例和对象可以理解成一个概念,实例的英文是instance,对象的英文是object。都是指类经过实例化之后得到的对象。
继承可以让子类 继承父类的变量以及方法 ,并且我们还可以在子类当中指定一些属于自己的特性,并且还可以重写父类的一些方法。一般我们会将不同的类放在不同的文件当中,使用import引入,一样可以实现继承。
我们创建一个蝙蝠类:
我们再创建一个蝙蝠侠的类,同时继承Superhero和Bat:
执行这个类:
我们可以通过yield关键字创建一个生成器,每次我们调用的时候执行到yield关键字处则停止。下次再次调用则还是从yield处开始往下执行:
除了yield之外,我们还可以使用()小括号来生成一个生成器:
关于生成器和迭代器更多的内容,可以查看下面这篇文章:
五分钟带你弄懂迭代器与生成器,夯实代码能力
我们引入functools当中的wraps之后,可以创建一个装饰器。装饰器可以在不修改函数内部代码的前提下,在外面包装一层其他的逻辑:
装饰器之前也有专门的文章详细介绍,可以移步下面的传送门:
一文搞定Python装饰器,看完面试不再慌
不知道有多少小伙伴可以看到结束,原作者的确非常厉害,把Python的基本操作基本上都囊括在里面了。如果都能读懂并且理解的话,那么Python这门语言就算是入门了。
如果你之前就有其他语言的语言基础,我想本文读完应该不用30分钟。当然在30分钟内学会一门语言是不可能的,也不是我所提倡的。但至少通过本文我们可以做到熟悉Python的语法,知道大概有哪些操作,剩下的就要我们亲自去写代码的时候去体会和运用了。
根据我的经验,在学习一门新语言的前期,不停地查阅资料是免不了的。希望本文可以作为你在使用Python时候的查阅文档。
最后,我这里有各种免费的编程类资料,有需要的及时私聊我,回复"学习",分享给大家,正在发放中............
2. python常见数据类型
一,python整数类型所表示的数据。
1,一般用以表示一类数值:所有正整数,0和负整数;
2,整型作为最常用的,频繁参与计算的数据类型,在python3.5中解释器会自动在内存中创建-5-3000之间的(包含5,不包含3000)整型对象,也就是说在该范围内,相等都是同一个已经创建好的整型对象。范围之外的即使相等也表示不同对象,该特性随python版本而改变,不要过于依赖。
3,bool型继承了int型,他是int的子类。
4,Python2中有长整型long,数值范围更大,在python3中已取消,所有整型统一由int表示。
5,参与所有数值计算,数学运算,科学计算。这也是所有编程语言都有的数据类型,因为编程语言生而需要模拟人的思维,借助数学方式,自动计算、更好的解决大量重复性的事务,因此数值类型、整数类型在编程语言中不可或缺。
6,支持二进制(0b\0B开头),十进制,八进制(0o\0O),十六进制(0x\0X)
二,python整数和浮点型支持常规的数值运算
整数和浮点数都可参与的运算:+ - * / %(取余) //(整除) **(幂)
Python字符型:
python字符型表示的数据:
python3支持Unicode编码,由字母、数字和符号组成的形式就叫字符串,更接近或者相同与人们文字符号表示,因此在信息表示和传递时它也是最受认可的形式。在程序编写中也是非常常用,对应的可操作的方法也很多,很有意思。
字符串不可被修改,可以拼接等方法创建新字符串对象;
支持分片和下标操作;a[2:]
支持+拼接,*重复操作和成员关系in/not in;
表示形式:用单引号双引号包含起来的符号;a = str(‘sdfsdfsdf’) 或 r’\t\nabcd’ 原始字符,Bytes:b’abcd’;
6,字符串属于不可变数据类型,内部机制为了节省空间,相同的两个字符串表示相同的一个对象。a = ‘python’ b = ‘python’ a is b :True
二, 字符串支持的运算方法
1,capitalize() :首字母大写后边的字母小写 a = ‘abcd’ b = a.capitalize() b:Abcd
2,casefold() lower():字母转换为全小写
3,center(width,fillchar) :居中,width填补的长度;fillchar添加的字符
a = a.center(10,’_’) //’____abcd____’ 默认无fillchar填充空格
4,count(sub,star,end) :字母计数:sub要查询的字符
5,encode(encoding=’utf-8’,errors=’strict’) 设置编码
Errors :设置错误类型
6,endswith(suffix,star,end) : 若以suffix结尾返回True
7,expandtabs(8) :设置字符串中tab按键符的空格长度:’\tabcde’
8,find(sub,star,end) : 返回指定范围内的字符串下标,未找到返回-1
9,index(sub,star,end) :返回指定范围字符串下标未找到抛出异常
10,isalnum() :判断字符串是否是字母或数字,或字母和数字组合
11,isalpha() :判断是否全是字母
12,isdecimal() :判断字符串是否是十进制数值
13,isdigit() :判断字符串是否是数字
14,isidentifier() :判断字符串中是否包含关键字
15,islower() :判断是否全小写
16,isnumeric() :判断全是数字
17,isspace() :判断是否是空格
18,isupper() 判断是否大写
19,istitle() :判断是否首字母大写
20,join(iterable) :把可迭代对象用字符串进行分割:a.join(‘123’)
21,ljust(width,fillchar);rjust() :左对齐右对齐
22, upper() :将字符串改为大写
23,split(sep=None,maxsplit=-1) :分割一个字符串,被选中字符在字符串中删除
‘ab1cd1efg’.split(‘1’) :[‘ab’,’cd’,’efg’]
三,字符串格式化:按照规格输出字符串
format(*args,**kwargs) :args位置参数,kwargs关键字参数
‘{0:.1f}’.format(123.468) :格式化参数,小数点后保留1位四舍五入
四,字符串操作符%
1,%s :格式化字符串 ‘abcd%sdef’%’dddd’
2,%d:格式化整数
3,%o格式化无符号八进制
4,%x格式化无符号十六进制
5,%f格式化定点数
6, %e: 科学计数法格式化定点数
7,%g 根据值大小自动选%f,%e
8, %G E X :大写形式
五,格式化辅助命令:
m.n :m最小总宽度,n小数点后位数:’%12.4f’%23456.789
六,转义字符:字符串前r避免转义:r’\nhello\thi’
\n:换行符
\t:横向制表符
\':'
\":"
\b:退格符
\r:回车
\v:纵向制表符
\f:换页符
\o,\x:八进制和十六进制
\0:空字符串
Python列表list
一,Python的列表list类型表示的数据:
Python列表在cpython中被解释为长度可变的数组,用其他对象组成的连续数组。
列表中元素可以是相同或不同的数据类型;
当列表元素增加或删除时,列表对象自动进行扩展或收缩内存,保证元素之间没有缝隙,总是连续的。
Python中的列表是一个序列,也是一个容器类型
创建列表:a = []; b = [1,’python’]; c = list(); d = list((1,3,4,5))
支持切片操作list[start,stop,step]
python列表常用方法
1,append添加单个元素:list.append(object); //a.append(‘python’)
2,extend添加可迭代对象: list.extend(iterable); //a.extend(‘abcde’/[1,2,3])
3,insert 插入元素:list.insert(index,object): 在index下标前插入元素//a.insert(2,’python’)
4,clear 清空所有元素:list.clear() //a.clear()
5,pop 删除并返回一个元素:list.pop(index) //默认删除默认一个元素
remove 删除指定元素:list.remove(v) ,v元素不存在报错 //a.remove(‘c’)
7,count 返回这个值在列表中数量:list.count(value)
8, 浅拷贝一个新列表:list.()
9,sort:排序list.sort(reverse=False/True) :默认升序
排序函数:sorted(list)
10,reverse: 原地翻转:list.reverse()
11,index(value,star,stop) :指定范围内该值下标:list.index(2,0,5)
列表元素访问:
下标访问:list[1]
For循环遍历
通过下标修改元素:list[2 ] = ‘hello’
列表常用运算符:
1,比较运算符:从第一个元素开始对比
2,+ 拼接一个新列表:l1+ l2
3, 重复操作符:* ,多个列表拼接
成员关系操作符:in/ not in
逻辑运算符:and not or
列表常用的排序方法:
冒泡排序;选择排序;快速排序;归并排序
Python元组tuple
一,Python元组tuple数据类型表示的数据:
元组是受到限制的、不可改变的列表;
可以是同构也可以是异构;
元组是序列类型、是可迭代对象,是容器类型。
元组的创建: a = (1,2,3)或a=1,2,3; b = tuple(); c = tuple(iterable)
支持切片操作tuple[start,stop,step]
二,python元组常用方法
1,index(value,star,stop) :指定范围内该值下标:tuple.index(2,0,5)
2,count(value) :值出现次数
三,支持运算:
1,比较运算符:从第一个元素开始对比
2,+ 拼接一个新元组:l1+ l2
3, 重复操作符:* ,多个元组拼接
4成员关系操作符:in/ not in
逻辑运算符:and not or
四,元组的访问
下标操作;
For循环遍历访问。
Python字典类型
一,Python字典dict表示的数据:{key:value}
可根据关键字:键快速索引到对应的值;
字典是映射类型,键值对一一对应关系,不是序列;
字典元素是无序的;
字典是可迭代对象,是容器类型;
字典的创建:k = {}; k1={‘keyword’:object}; k2 = dict();
K3 = dict(mapping); dict=(iterable)
二,字典的访问:
通过key:k[‘key’]
修改key对应的值:K[‘key’] = value
For循环遍历出来的是key;
For循环键值对:for I in d.items():
For 循环enumerate: for k,v in enumerate(k1):
In/not in 成员关系查询键不支持查值
三,字典常用方法
get(key,de):获取值:k.get(key,de) //若不存在则默认输出de
pop(k,de):删除一个键值对,不存在输出de,未设置报错;
keys() :返回字典所有key组成的序列:list(k.keys()) [1,2,3];
values():返回字典所有value组成的序列:list(k.values())
items():返回键值对组成的元组为元素的序列:(类set)list(k.items())
update(e):更新字典:e可是字典或两元素组成的单位元素序列:e=[(5,6),(7,8)];
k.update(e)
clear():清空字典;
popitem()删除某个键值对,若字典为空则报错
() :浅拷贝
10, fromkeys(iterable,value=None):从可迭代对象创建字典
{}.fromkeys([1,2,3]) -----{1:None,2:None,3:None}
11,setdefault(k,d=None) :若key不存在则生成一个键值对
k.setdefault(‘keyword’)
Python 集合set
集合表示的数据:
多个元素的无序组合,集合是无序的,集合元素是唯一的;
字典的键是由集合实现的;
集合是可迭代对象
集合创建:s = {1,2}; s1 = set(); s2 = set(iterable)
集合元素的访问:
For 循环将集合所有元素全部访问一遍,不重复
常用方法:
add(object):s.add(‘hi’) 向集合添加一个元素
pop() :弹栈,集合为空则报错:删除任意一个元素;
clear():清空集合,返回一个空集合对象;
remove(object):删除一个元素,不存在和报错:s.remove(‘hi’)
update(集合):更新另一个集合,元素不存在则不更新;
() :浅拷贝
集合的运算:
交集:s1&s2;
差集,补集:s1-s2;
并集:s1|s2;
Issubset():判断是否是子集:s1.issubset(s2) s1是否s2的集合子集
Issuperset():判断是否是父集:s1.issuperset()
不可变集合:
Frozenset():返回一个空的不可变集合对象
Frozenset(iterable):
S = frozenset(iterable)
Python序列类型共同特性
一,序列类型共同特性
python序列类型有:str字符串,list列表,tuple元组
都支持下标索引,切片操作;
下标都是从0开始,都可通过下标进行访问;
拥有相同的操作符
二,支持的函数:
len(obj):返回对象长度;
list(iterable):将可迭代对象转为列表;
tuple(iterable):将可迭代对象转为元组;
str(ojb):将任何对象转为字符串形式;
max(iterable): python3中元素要是同类型,python2中元素可异构:max([‘a’,1])
min(iterable):和max类似;
sum(iterable,star=0),求可迭代对象和,默认star为0,元素不能为字符串
sorted(iterable,key=None,reverse=False)
s=[(‘a’,3),(‘b’,2),(‘c’,9)]
sorted(s,key=lambda s:s[1]) //按照数字排序
reversed(sequence):翻转序列,返回迭代器
enumerate(iterable):返回enumerate对象,其元素都是一个元组(下标,值)
zip(iter1,iter2): zip([1,2],[3,4]) ----[(1,3),(2,4)]
序列类型的切片操作:
Slice:
L[index]; 访问某个元素;
L[1:4]; 区间
L[star:stop:step]; 设置步长取区间元素
3. python中set()函数的用法
使用PYTHON里的SET。
软件:Python的3.0版本
电脑:WIN10
系统:3.2免费
1、set集合中没有重复的值。set集合的形式为:{item1,item2...},创建set:s = {1,2,3}或者s= set()或者s= set((1,2,3)),重复元素在set中自动被过滤。
4. python中set()函数的用法
python中set()函数的用法如下:
工具/原料:台式电脑、Win10、Python3.6.5。
1、首先按下“Win+R”组合键,打开运行窗口,如下图所示。
5. Python中内置数据类型list,tuple,dict,set的区别和用法
这篇文章主要给大家介绍了Python中内置数据类型list,tuple,dict,set的区别和用法,都是非常基础的知识,十分的细致全面,有需要的小伙伴可以参考下。
Python语言简洁明了,可以用较少的代码实现同样的功能。这其中Python的四个内置数据类型功不可没,他们即是list, tuple, dict, set。这里对他们进行一个简明的总结。
List
字面意思就是一个集合,在Python中List中的元素用中括号[]来表示,可以这样定义一个List:
L = [12, 'China', 19.998]
可以看到并不要求元素的类型都是一样的。当然也可以定义一个空的List:
L = []
Python中的List是有序的,所以要访问List的话显然要通过序号来访问,就像是数组的下标一样,一样是下标从0开始:
>>> print L[0]
12
千万不要越界,否则会报错
>>> print L[3]
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
IndexError: list index out of range
List也可以倒序访问,通过“倒数第x个”这样的下标来表示序号,比如-1这个下标就表示倒数第一个元素:
>>> L = [12, 'China', 19.998]
>>> print L[-1]
19.998
-4的话显然就越界了
>>> print L[-4]
Traceback (most recent call last):
File "<pyshell#2>", line 1, in <mole>
print L[-4]
IndexError: list index out of range
>>>
List通过内置的append()方法来添加到尾部,通过insert()方法添加到指定位置(下标从0开始):
>>> L = [12, 'China', 19.998]
>>> L.append('Jack')
>>> print L
[12, 'China', 19.998, 'Jack']
>>> L.insert(1, 3.14)
>>> print L
[12, 3.14, 'China', 19.998, 'Jack']
>>>
通过pop()删除最后尾部元素,也可以指定一参数删除指定位置:
>>> L.pop()
'Jack'
>>> print L
[12, 3.14, 'China', 19.998]
>>> L.pop(0)
12
>>> print L
[3.14, 'China', 19.998]
也可以通过下标进行复制替换
>>> L[1] = 'America'
>>> print L
[3.14, 'America', 19.998]
Tuple
Tuple可以看做是一种“不变”的List,访问也是通过下标,用小括号()表示:
>>> t = (3.14, 'China', 'Jason')
>>> print t
(3.14, 'China', 'Jason')
但是不能重新赋值替换:
>>> t[1] = 'America'
Traceback (most recent call last):
File "<pyshell#21>", line 1, in <mole>
t[1] = 'America'
TypeError: 'tuple' object does not support item assignment
也没有pop和insert、append方法。
可以创建空元素的tuple:
t = ()
或者单元素tuple (比如加一个逗号防止和声明一个整形歧义):
t = (3.14,)
那么tuple这个类型到底有什么用处呢?要知道如果你希望一个函数返回多个返回值,其实只要返回一个tuple就可以了,因为tuple里面的含有多个值,而且是不可变的(就像是java里面的final)。当然,tuple也是可变的,比如:
>>> t = (3.14, 'China', 'Jason', ['A', 'B'])
>>> print t
(3.14, 'China', 'Jason', ['A', 'B'])
>>> L = t[3]
>>> L[0] = 122
>>> L[1] = 233
>>> print t
(3.14, 'China', 'Jason', [122, 233])
这是因为Tuple所谓的不可变指的是指向的位置不可变,因为本例子中第四个元素并不是基本类型,而是一个List类型,所以t指向的该List的位置是不变的,但是List本身的内容是可以变化的,因为List本身在内存中的分配并不是连续的。
Dict
Dict是Python中非常重要的数据类型,就像它的字面意思一样,它是个活字典,其实就是Key-Value键值对,类似于HashMap,可以用花括号{}通过类似于定义一个C语言的结构体那样去定义它:
>>> d = {
'Adam': 95,
'Lisa': 85,
'Bart': 59,
'Paul': 75
}
>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Bart': 59}
可以看到打印出来的结果都是Key:Value的格式,可以通过len函数计算它的长度(List,tuple也可以):
>>> len(d)
4
可以直接通过键值对方式添加dict中的元素:
>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Bart': 59}
>>> d['Jone'] = 99
>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Jone': 99, 'Bart': 59}
List和Tuple用下标来访问内容,而Dict用Key来访问: (字符串、整型、浮点型和元组tuple都可以作为dict的key)
>>> print d['Adam']
95
如果Key不存在,会报错:
>>> print d['Jack']
Traceback (most recent call last):
File "<pyshell#40>", line 1, in <mole>
print d['Jack']
KeyError: 'Jack'
所以访问之前最好先查询下key是否存在:
>>> if 'Adam' in d : print 'exist key'
exist key
或者直接用保险的get方法:
>>> print d.get('Adam')
95
>>> print d.get('Jason')
None
至于遍历一个dict,实际上是在遍历它的所有的Key的集合,然后用这个Key来获得对应的Value:
>>> for key in d : print key, ':', d.get(key)
Lisa : 85
Paul : 75
Adam : 95
Bart : 59
Dict具有一些特点:
查找速度快。无论是10个还是10万个,速度都是一样的,但是代价是耗费的内存大。List相反,占用内存小,但是查找速度慢。这就好比是数组和链表的区别,数组并不知道要开辟多少空间,所以往往开始就会开辟一个大空间,但是直接通过下标查找速度快;而链表占用的空间小,但是查找的时候必须顺序的遍历导致速度很慢
没有顺序。Dict是无顺序的,而List是有序的集合,所以不能用Dict来存储有序集合
Key不可变,Value可变。一旦一个键值对加入dict后,它对应的key就不能再变了,但是Value是可以变化的。所以List不可以当做Dict的Key,但是可以作为Value:
>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Jone': 99, 'Bart': 59}
>>> d['NewList'] = [12, 23, 'Jack']
>>> print d
{'Bart': 59, 'NewList': [12, 23, 'Jack'], 'Adam': 95, 'Jone': 99, 'Lisa': 85, 'Paul': 75}
Key不可重复。(下面例子中添加了一个'Jone':0,但是实际上原来已经有'Jone'这个Key了,所以仅仅是改了原来的value)
>>> print d
{'Bart': 59, 'NewList': [12, 23, 'Jack'], 'Adam': 95, 'Jone': 99, 'Lisa': 85, 'Paul': 75}
>>> d['Jone'] = 0
>>> print d
{'Bart': 59, 'NewList': [12, 23, 'Jack'], 'Adam': 95, 'Jone': 0, 'Lisa': 85, 'Paul': 75}
Dict的合并,如何将两个Dict合并为一个,可以用dict函数:
>>> d1 = {'mike':12, 'jack':19}
>>> d2 = {'jone':22, 'ivy':17}
>>> dMerge = dict(d1.items() + d2.items())
>>> print dMerge
{'mike': 12, 'jack': 19, 'jone': 22, 'ivy': 17}
或者
>>> dMerge2 = dict(d1, **d2)
>>> print dMerge2
{'mike': 12, 'jack': 19, 'jone': 22, 'ivy': 17}
方法2比方法1速度快很多,方法2等同于:
>>> dMerge3 = dict(d1)
>>> dMerge3.update(d2)
>>> print dMerge
{'mike': 12, 'jack': 19, 'jone': 22, 'ivy': 17}
set
set就像是把Dict中的key抽出来了一样,类似于一个List,但是内容又不能重复,通过调用set()方法创建:
>>> s = set(['A', 'B', 'C'])
就像dict是无序的一样,set也是无序的,也不能包含重复的元素。
对于访问一个set的意义就仅仅在于查看某个元素是否在这个集合里面:
>>> print 'A' in s
True
>>> print 'D' in s
False
大小写是敏感的。
也通过for来遍历:
s = set([('Adam', 95), ('Lisa', 85), ('Bart', 59)])
#tuple
for x in s:
print x[0],':',x[1]
>>>
Lisa : 85
Adam : 95
Bart : 59
通过add和remove来添加、删除元素(保持不重复),添加元素时,用set的add()方法:
>>> s = set([1, 2, 3])
>>> s.add(4)
>>> print s
set([1, 2, 3, 4])
如果添加的元素已经存在于set中,add()不会报错,但是不会加进去了:
>>> s = set([1, 2, 3])
>>> s.add(3)
>>> print s
set([1, 2, 3])
删除set中的元素时,用set的remove()方法:
>>> s = set([1, 2, 3, 4])
>>> s.remove(4)
>>> print s
set([1, 2, 3])
如果删除的元素不存在set中,remove()会报错:
>>> s = set([1, 2, 3])
>>> s.remove(4)
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
KeyError: 4
所以如果我们要判断一个元素是否在一些不同的条件内符合,用set是最好的选择,下面例子:
months = set(['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec',])
x1 = 'Feb'
x2 = 'Sun'
if x1 in months:
print 'x1: ok'
else:
print 'x1: error'
if x2 in months:
print 'x2: ok'
else:
print 'x2: error'
>>>
x1: ok
x2: error
6. 关于Python:get语句的问题
r.get(i,0) 就是,取i键的值,如果键不存在返回0。
r.setdefault(i,0) 则是,取i键的值,如果键不存在返回0,并且创建一个i:0的键值对。
所以,你的这个例子,两种写法,效果是一样的。没有区别,你看下面的例子,就很明显。
get完,字典没有变化,setdefault则新增了一个键值对
7. set在python中是什么意思
在Python set是基本数据类型的一种集合类型,它有可变集合(set())和不可变集合(frozenset)两种。
创建集合set、集合set添加、集合删除、交集、并集、差集的操作都是非常实用的方法。set是一个无序的元素集合,支持并、交、差及对称差等数学运算,但由于set不记录元素位置,因此不支持索引、分片等类序列的操作。
python 中list,tuple,dict,set是最常用的集合类型。
list列表,相当于一个数组,不过list的长度是自动变化的而且列表元素自由的,不必每个元素都是同一种类型。它的简洁的定义方式是a=[]。有序组合
tuple也是一个组合。不过tuple在定义好之后就不能再变化。它的简洁的定义方式是a=1,3也可以是a=(1,3).有序组合。
dict是字典类型。也就是键值对类型。键名不可以重复,并且不可以变化(字符串就符合这个要求,常用字符串作为键名)。它的简洁的定义方式是a={}.无序组合(意思就是你无法按照添加的顺序对他进行遍历)。
set是set类型(不好翻译,用的也少)。也是一个无序的组合,元素是互斥的,也就不会出现相同的元素。可以把一个序列转换成无重复元素的set.无序组合。
8. python实现跨文件全局变量的方法
python实现跨文件全局变量的方法
在使用Python编写的应用的过程中,有时候会遇到多个文件之间传递同一个全局变量的情况。本文就此给出了如下的解决方法供大家参考。
文件1:globalvar.py
#!/usr/bin/env python2.7
class GlobalVar:
db_handle = None
mq_client = None
def set_db_handle(db):
GlobalVar.db_handle = db
def get_db_handle():
return GlobalVar.db_handle
def set_mq_client(mq_cli):
GlobalVar.mq_client = mq_cli
def get_mq_client():
return GlobalVar.mq_client
文件2:set.py
import globalvar as GlobalVar
def set():
GlobalVar.set_mq_client(10)
print "------set mq_client in set.py------mq_client: " + str(GlobalVar.get_mq_client())
文件3:get.py
#!/usr/bin/env python2.7
import globalvar as GlobalVar
def get():
print "------get mq_client in get.py------mq_client: " + str(GlobalVar.get_mq_client())
文件4:main.py
#!/usr/bin/env python2.7
import set
import get
set.set()
get.get()
其中globalvar.py中定义了两个全局变量,在set.py中的set函数中对其进行赋值,在get.py文件中的get函数取值并打印。main.py函数作为应用入口,调用set和get。
这样就可以看到一个完整的应用中,全局变量的跨文件使用。
9. python中set是什么意思
在Python set是基本数据类型的一种集合类型,它有可变集合(set())和不可变集合(frozenset)两种。
创建集合set、集合set添加、集合删除、交集、并集、差集的操作都是非常实用的方法。set是一个无序的元素集合,支持并、交、差及对称差等数学运算,但由于set不记录元素位置,因此不支持索引、分片等类序列的操作。
tuple算是list和str的杂合(杂交的都有自己的优势,上一节的末后已经显示了),那么set则可以堪称是list和dict的杂合。
set拥有类似dict的特点:可以用{}花括号来定义;其中的元素没有序列,也就是是非序列类型的数据;而且,set中的元素不可重复,这就类似dict的键,set也有一点list的特点:有一种集合可以原处修改。
以上内容参考网络-Python