导航:首页 > 编程语言 > Python神经网络模型预测人口

Python神经网络模型预测人口

发布时间:2022-10-16 13:35:44

❶ BP神经网络——python简单实现三层神经网络(Numpy)

我们将在Python中创建一个NeuralNetwork类,以训练神经元以给出准确的预测。该课程还将具有其他帮助程序功能。

1. 应用Sigmoid函数
我们将使用 Sigmoid函数 (它绘制一条“ S”形曲线)作为神经网络的激活函数。

2. 训练模型
这是我们将教神经网络做出准确预测的阶段。每个输入将具有权重(正或负)。
这意味着具有大量正权重或大量负权重的输入将对结果输出产生更大的影响。

我们最初是将每个权重分配给一个随机数。

本文参考翻译于此网站 —— 原文

❷ 如何建立bp神经网络预测 模型

建立BP神经网络预测 模型,可按下列步骤进行:

1、提供原始数据

2、训练数据预测数据提取及归一化

3、BP网络训练

4、BP网络预测

5、结果分析

现用一个实际的例子,来预测2015年和2016年某地区的人口数。

已知2009年——2014年某地区人口数分别为3583、4150、5062、4628、5270、5340万人

执行BP_main程序,得到

[ 2015, 5128.631704710423946380615234375]

[ 2016, 5100.5797325642779469490051269531]

代码及图形如下。

❸ 从零开始用Python构建神经网络

从零开始用Python构建神经网络
动机:为了更加深入的理解深度学习,我们将使用 python 语言从头搭建一个神经网络,而不是使用像 Tensorflow 那样的封装好的框架。我认为理解神经网络的内部工作原理,对数据科学家来说至关重要。
这篇文章的内容是我的所学,希望也能对你有所帮助。
神经网络是什么?
介绍神经网络的文章大多数都会将它和大脑进行类比。如果你没有深入研究过大脑与神经网络的类比,那么将神经网络解释为一种将给定输入映射为期望输出的数学关系会更容易理解。
神经网络包括以下组成部分
? 一个输入层,x
? 任意数量的隐藏层
? 一个输出层,?
? 每层之间有一组权值和偏置,W and b
? 为隐藏层选择一种激活函数,σ。在教程中我们使用 Sigmoid 激活函数
下图展示了 2 层神经网络的结构(注意:我们在计算网络层数时通常排除输入层)

2 层神经网络的结构
用 Python 可以很容易的构建神经网络类

训练神经网络
这个网络的输出 ? 为:

你可能会注意到,在上面的等式中,输出 ? 是 W 和 b 函数。
因此 W 和 b 的值影响预测的准确率. 所以根据输入数据对 W 和 b 调优的过程就被成为训练神经网络。
每步训练迭代包含以下两个部分:
? 计算预测结果 ?,这一步称为前向传播
? 更新 W 和 b,,这一步成为反向传播
下面的顺序图展示了这个过程:

前向传播
正如我们在上图中看到的,前向传播只是简单的计算。对于一个基本的 2 层网络来说,它的输出是这样的:

我们在 NeuralNetwork 类中增加一个计算前向传播的函数。为了简单起见我们假设偏置 b 为0:

但是我们还需要一个方法来评估预测结果的好坏(即预测值和真实值的误差)。这就要用到损失函数。
损失函数
常用的损失函数有很多种,根据模型的需求来选择。在本教程中,我们使用误差平方和作为损失函数。
误差平方和是求每个预测值和真实值之间的误差再求和,这个误差是他们的差值求平方以便我们观察误差的绝对值。
训练的目标是找到一组 W 和 b,使得损失函数最好小,也即预测值和真实值之间的距离最小。
反向传播
我们已经度量出了预测的误差(损失),现在需要找到一种方法来传播误差,并以此更新权值和偏置。
为了知道如何适当的调整权值和偏置,我们需要知道损失函数对权值 W 和偏置 b 的导数。
回想微积分中的概念,函数的导数就是函数的斜率。

梯度下降法
如果我们已经求出了导数,我们就可以通过增加或减少导数值来更新权值 W 和偏置 b(参考上图)。这种方式被称为梯度下降法。
但是我们不能直接计算损失函数对权值和偏置的导数,因为在损失函数的等式中并没有显式的包含他们。因此,我们需要运用链式求导发在来帮助计算导数。

链式法则用于计算损失函数对 W 和 b 的导数。注意,为了简单起见。我们只展示了假设网络只有 1 层的偏导数。
这虽然很简陋,但是我们依然能得到想要的结果—损失函数对权值 W 的导数(斜率),因此我们可以相应的调整权值。
现在我们将反向传播算法的函数添加到 Python 代码中

为了更深入的理解微积分原理和反向传播中的链式求导法则,我强烈推荐 3Blue1Brown 的如下教程:
Youtube:https://youtu.be/tIeHLnjs5U8
整合并完成一个实例
既然我们已经有了包括前向传播和反向传播的完整 Python 代码,那么就将其应用到一个例子上看看它是如何工作的吧。

神经网络可以通过学习得到函数的权重。而我们仅靠观察是不太可能得到函数的权重的。
让我们训练神经网络进行 1500 次迭代,看看会发生什么。 注意观察下面每次迭代的损失函数,我们可以清楚地看到损失函数单调递减到最小值。这与我们之前介绍的梯度下降法一致。

让我们看看经过 1500 次迭代后的神经网络的最终预测结果:

经过 1500 次迭代训练后的预测结果
我们成功了!我们应用前向和方向传播算法成功的训练了神经网络并且预测结果收敛于真实值。
注意预测值和真实值之间存在细微的误差是允许的。这样可以防止模型过拟合并且使得神经网络对于未知数据有着更强的泛化能力。
下一步是什么?
幸运的是我们的学习之旅还没有结束,仍然有很多关于神经网络和深度学习的内容需要学习。例如:
? 除了 Sigmoid 以外,还可以用哪些激活函数
? 在训练网络的时候应用学习率
? 在面对图像分类任务的时候使用卷积神经网络
我很快会写更多关于这个主题的内容,敬请期待!
最后的想法
我自己也从零开始写了很多神经网络的代码
虽然可以使用诸如 Tensorflow 和 Keras 这样的深度学习框架方便的搭建深层网络而不需要完全理解其内部工作原理。但是我觉得对于有追求的数据科学家来说,理解内部原理是非常有益的。
这种练习对我自己来说已成成为重要的时间投入,希望也能对你有所帮助

❹ python神经网络编程有什么用

预测器
神经网络和计算机一样,对于输入和输出都做了一些处理,当我们不知道这些是什么具体处理的时候,可以使用模型来估计,模型中最重要的就是其中的参数。
对于以前所学的知识都是求出特定的参数,而在这里是使用误差值的大小去多次指导参数的调整,这就是迭代。
误差值=真实值-计算值
分类器
预测器是转换输入和输出之间的关系,分类器是将两类事物划分开,只是预测器的目的是找到输出在直线上,分类器是找到输出分为两类各在直线的上下方。但其实都是找到一个合适的斜率(只考虑简单情况下)
分类器中的误差值E=期望的正确值-基于A的猜测值得到的计算值$ E=t-y \quad E=(ΔA)x $这就是使用误差值E得到ΔA
ΔA=E/x
,再将ΔA作为调整分界线斜率A的量
但是这样会存在一个问题,那就是最终改进的直线会与最后一个训练样本十分匹配,近视可以认识忽略了之前的训练样本,所以要采用一个新的方法:采用ΔA几分之一的一个变化值,这样既能解决上面的问题,又可以有节制地抑制错误和噪声的影响,该方法如下
ΔA=L(E/x)
此处的L称之为调节系数(学习率)
使用学习率可以解决以上问题,但是当数据本身不是由单一线性过程支配时,简单的线性分类器还是不能实现分类,这个时候就要采用多个线性分类器来划分(这就是神经网络的核心思想)
神经网络中追踪信号
对于一个输入,神经元不会立即反应,而是会抑制输入,只有当输入增强到了一定程度,才可以触发输出,并且神经元前后层之间是互相连接的。
神经元的输入和输出一般采用S函数(sigmoid function)
y=11+e−x
。因为神经元存在多个输入,所以需要将输入的总和作为S函数的输出。要控制最后的输出结果,最有效的方式就是调整节点之间的连接强度,这就要使用到矩阵点乘。
一般神经网络分为三层,第一层是输入层,无需任何计算;第二层是隐藏层;最后是输出层。
总体过程如下:(特别注意:权重矩阵是不一样的)
1.输入层接收信号,通过权重比例输出到隐藏层,此处遵守公式
X=W•I
$$
\begin{pmatrix}
w_{1,1} & w_{2,1}\\
w_{1,2} & w_{2,2}
\end{pmatrix}
\begin{pmatrix}
input1\\
input2
\end{pmatrix}
$$其中W是权重矩阵,I是输入矩阵,X是组合调节后的信号
2.隐藏层使用S函数(激活函数)对输入进行处理,然后输出到输出层
3.按照同样的公式,先经过权重的组合调节再适用S函数(激活函数)得到最后的输出
反向传播误差
误差=期望的输出值-实际的计算值,所以根据误差来调整权重。误差一般使用不等分误差,就是按照权重的比例分割误差。
使用权重,将误差从输出向后传播到网络中,被称为反向传播。

❺ 如何用神经网络进行时间序列预测

神经网络是可以用来预测时间序列。例如神经网络人口预测。已知1990至2009年的某地区人口数[11 28 30 42 44 56 49 60 50 63 56 74 76 65 92 105 124 117 132 128]。预测2010-2016年的某地区人口数。
具体实施过程:
%已知数据
t=1990:2009;
x=[11 28 30 42 44 56 49 60 50 63 56 74 76 65 92 105 124 117 132 128];
% 自回归阶数
lag=3;
%预测步数为fn
fn=length(t);
%输出数据
[f_out,iinput]=BP(x,lag,fn); %BP()神经网络预测函数
[x' iinput']
R2=corrcoef(x,iinput)

%预测年份或某一时间段
%t1=2015:2016;
t1=length(x)+1:length(x)+7;
%预测步数为fn
fn=length(t1);
[f_out,iinput]=BP(x,lag,fn);
P=vpa(f_out,5);
%预测数据
t1=2010:2016;
[t1' P']
% 画出预测图
figure(6),plot(t,x,'b*-'),hold on
plot(t(end):t1(end),[iinput(end),f_out],'rp-'),grid on
title('BP神经网络预测某地区人口数')
xlabel('年份'),ylabel('人口数');
legend('2009-2014年人口变化数','2014-2016年人口预测数');

❻ bp神经网络人口预测程序(matlab实现)

x=[54167
55196
56300
57482
58796
60266
61465
62828
64653
65994
67207
66207
65859
67295
69172
70499
72538
74542
76368
78534
80671
82992
85229
87177
89211
90859
92420
93717
94974
96259
97542
98705
100072
101654
103008
104357
105851
107507
109300
111026
112704
114333
115823
117171
118517
119850
121121
122389
123626
124761
125786
126743
127627
128453
129227
129988
130756
131448
132129
132802
134480
135030
135770
136460
137510]';
% 该脚本用来做NAR神经网络预测
% 作者:Macer程
lag=3; % 自回归阶数
iinput=x; % x为原始序列(行向量)
n=length(iinput);

%准备输入和输出数据
inputs=zeros(lag,n-lag);
for i=1:n-lag
inputs(:,i)=iinput(i:i+lag-1)';
end
targets=x(lag+1:end);

%创建网络
hiddenLayerSize = 10; %隐藏层神经元个数
net = fitnet(hiddenLayerSize);

% 避免过拟合,划分训练,测试和验证数据的比例
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

%训练网络
[net,tr] = train(net,inputs,targets);
%% 根据图表判断拟合好坏
yn=net(inputs);
errors=targets-yn;
figure, ploterrcorr(errors) %绘制误差的自相关情况(20lags)
figure, parcorr(errors) %绘制偏相关情况
%[h,pValue,stat,cValue]= lbqtest(errors) %Ljung-Box Q检验(20lags)
figure,plotresponse(con2seq(targets),con2seq(yn)) %看预测的趋势与原趋势
%figure, ploterrhist(errors) %误差直方图
%figure, plotperform(tr) %误差下降线


%% 下面预测往后预测几个时间段
fn=7; %预测步数为fn。


f_in=iinput(n-lag+1:end)';
f_out=zeros(1,fn); %预测输出
% 多步预测时,用下面的循环将网络输出重新输入
for i=1:fn
f_out(i)=net(f_in);
f_in=[f_in(2:end);f_out(i)];
end
% 画出预测图
figure,plot(1949:2013,iinput,'b',2013:2020,[iinput(end),f_out],'r')

图1自相关


图3预测

上面的程序是可以通用的,只要你根据自己需要是可以修改用在其他地方的,基本思想就是用前lag年的人口数来预测下一年的人口,至于lag等于几你是可以自己改的。还有在对结果好坏的判断中,仅仅看误差图是不够的,如果是一个好的预测,那么自相关性图中除了0阶自相关外,其他的自相关系数系数都不应该超过上下置信区间。还有其他的统计量和图表都都写在”%“后面了,如果需要,去掉就可用。最后的预测值为f_out,我的预测值为

138701.065269972 139467.632609654 140207.209707364 141210.109373609 141981.285378849 142461.332139592 143056.073139776


❼ python 神经网络预测 持续性预测

学习人工智能时,我给自己定了一个目标--用Python写一个简单的神经网络。为了确保真得理解它,我要求自己不使用任何神经网络库,从头写起。多亏了Andrew Trask写得一篇精彩的博客,我做到了!下面贴出那九行代码:在这篇文章中,我将解释我是如何做得,以便你可以写出你自己的。我将会提供一个长点的但是更完美的源代码。

❽ 如何用 Python 构建神经网络择时模型

import math
import random
random.seed(0)
def rand(a,b): #随机函数
return (b-a)*random.random()+a
def make_matrix(m,n,fill=0.0):#创建一个指定大小的矩阵
mat = []
for i in range(m):
mat.append([fill]*n)
return mat
#定义sigmoid函数和它的导数
def sigmoid(x):
return 1.0/(1.0+math.exp(-x))
def sigmoid_derivate(x):
return x*(1-x) #sigmoid函数的导数
class BPNeuralNetwork:
def __init__(self):#初始化变量
self.input_n = 0
self.hidden_n = 0
self.output_n = 0
self.input_cells = []
self.hidden_cells = []
self.output_cells = []
self.input_weights = []
self.output_weights = []
self.input_correction = []
self.output_correction = []
#三个列表维护:输入层,隐含层,输出层神经元
def setup(self,ni,nh,no):
self.input_n = ni+1 #输入层+偏置项
self.hidden_n = nh #隐含层
self.output_n = no #输出层
#初始化神经元
self.input_cells = [1.0]*self.input_n
self.hidden_cells= [1.0]*self.hidden_n
self.output_cells= [1.0]*self.output_n
#初始化连接边的边权
self.input_weights = make_matrix(self.input_n,self.hidden_n) #邻接矩阵存边权:输入层->隐藏层
self.output_weights = make_matrix(self.hidden_n,self.output_n) #邻接矩阵存边权:隐藏层->输出层
#随机初始化边权:为了反向传导做准备--->随机初始化的目的是使对称失效
for i in range(self.input_n):
for h in range(self.hidden_n):
self.input_weights[i][h] = rand(-0.2 , 0.2) #由输入层第i个元素到隐藏层第j个元素的边权为随机值
for h in range(self.hidden_n):
for o in range(self.output_n):
self.output_weights[h][o] = rand(-2.0, 2.0) #由隐藏层第i个元素到输出层第j个元素的边权为随机值
#保存校正矩阵,为了以后误差做调整
self.input_correction = make_matrix(self.input_n , self.hidden_n)
self.output_correction = make_matrix(self.hidden_n,self.output_n)
#输出预测值
def predict(self,inputs):
#对输入层进行操作转化样本
for i in range(self.input_n-1):
self.input_cells[i] = inputs[i] #n个样本从0~n-1
#计算隐藏层的输出,每个节点最终的输出值就是权值*节点值的加权和
for j in range(self.hidden_n):
total = 0.0
for i in range(self.input_n):
total+=self.input_cells[i]*self.input_weights[i][j]
# 此处为何是先i再j,以隐含层节点做大循环,输入样本为小循环,是为了每一个隐藏节点计算一个输出值,传输到下一层
self.hidden_cells[j] = sigmoid(total) #此节点的输出是前一层所有输入点和到该点之间的权值加权和
for k in range(self.output_n):
total = 0.0
for j in range(self.hidden_n):
total+=self.hidden_cells[j]*self.output_weights[j][k]
self.output_cells[k] = sigmoid(total) #获取输出层每个元素的值
return self.output_cells[:] #最后输出层的结果返回
#反向传播算法:调用预测函数,根据反向传播获取权重后前向预测,将结果与实际结果返回比较误差
def back_propagate(self,case,label,learn,correct):
#对输入样本做预测
self.predict(case) #对实例进行预测
output_deltas = [0.0]*self.output_n #初始化矩阵
for o in range(self.output_n):
error = label[o] - self.output_cells[o] #正确结果和预测结果的误差:0,1,-1
output_deltas[o]= sigmoid_derivate(self.output_cells[o])*error#误差稳定在0~1内
#隐含层误差
hidden_deltas = [0.0]*self.hidden_n
for h in range(self.hidden_n):
error = 0.0
for o in range(self.output_n):
error+=output_deltas[o]*self.output_weights[h][o]
hidden_deltas[h] = sigmoid_derivate(self.hidden_cells[h])*error
#反向传播算法求W
#更新隐藏层->输出权重
for h in range(self.hidden_n):
for o in range(self.output_n):
change = output_deltas[o]*self.hidden_cells[h]
#调整权重:上一层每个节点的权重学习*变化+矫正率
self.output_weights[h][o] += learn*change + correct*self.output_correction[h][o]
#更新输入->隐藏层的权重
for i in range(self.input_n):
for h in range(self.hidden_n):
change = hidden_deltas[h]*self.input_cells[i]
self.input_weights[i][h] += learn*change + correct*self.input_correction[i][h]
self.input_correction[i][h] = change
#获取全局误差
error = 0.0
for o in range(len(label)):
error = 0.5*(label[o]-self.output_cells[o])**2 #平方误差函数
return error
def train(self,cases,labels,limit=10000,learn=0.05,correct=0.1):
for i in range(limit): #设置迭代次数
error = 0.0
for j in range(len(cases)):#对输入层进行访问
label = labels[j]
case = cases[j]
error+=self.back_propagate(case,label,learn,correct) #样例,标签,学习率,正确阈值
def test(self): #学习异或
cases = [
[0, 0],
[0, 1],
[1, 0],
[1, 1],
] #测试样例
labels = [[0], [1], [1], [0]] #标签
self.setup(2,5,1) #初始化神经网络:输入层,隐藏层,输出层元素个数
self.train(cases,labels,10000,0.05,0.1) #可以更改
for case in cases:
print(self.predict(case))
if __name__ == '__main__':
nn = BPNeuralNetwork()
nn.test()

❾ matlab BP神经网络人口预测,用32个数据每4个为一组,前三个为输入,进行滚动预测

你最好用优化算法优化一下,结果肯定会更好,我做过一些这方面的研究,我给你个简答的遗传算法优化BP网络的列子,你可以套用一下,就出来了,同样是预测:
神经网络遗传算法函数极值寻优

%% 清空环境变量
clc
clear

tic
%% 训练数据预测数据提取及归一化
%下载输入输出数据
load data1 input output

%从1到2000间随机排序
k=rand(1,4000);
[m,n]=sort(k);

%找出训练数据和预测数据
input_train=input(n(1:3900),:)';
output_train=output(n(1:3900),:)';
input_test=input(n(3901:4000),:)';
output_test=output(n(3901:4000),:)';

%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);

%% BP网络训练
% %初始化网络结构
net=newff(inputn,outputn,5);

net.trainParam.epochs=100;
net.trainParam.lr=0.1;
net.trainParam.goal=0.0000004;

%网络训练
net=train(net,inputn,outputn);

%% BP网络预测
%预测数据归一化
inputn_test=mapminmax('apply',input_test,inputps);

%网络预测输出
an=sim(net,inputn_test);

%网络输出反归一化
BPoutput=mapminmax('reverse',an,outputps);

%% 结果分析

figure(1)
plot(BPoutput,':og')
hold on
plot(output_test,'-*');
legend('预测输出','期望输出','fontsize',12)
title('BP网络预测输出','fontsize',12)
xlabel('样本','fontsize',12)
ylabel('输出','fontsize',12)

%预测误差
error=BPoutput-output_test;

figure(2)
plot(error,'-*')
title('神经网络预测误差')

figure(3)
plot((output_test-BPoutput)./BPoutput,'-*');
title('神经网络预测误差百分比')

errorsum=sum(abs(error))

❿ 如何在Python中用LSTM网络进行时间序列预测

时间序列模型

时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征。这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的。
举个栗子:根据过去两年某股票的每天的股价数据推测之后一周的股价变化;根据过去2年某店铺每周想消费人数预测下周来店消费的人数等等

RNN 和 LSTM 模型

时间序列模型最常用最强大的的工具就是递归神经网络(recurrent neural network, RNN)。相比与普通神经网络的各计算结果之间相互独立的特点,RNN的每一次隐含层的计算结果都与当前输入以及上一次的隐含层结果相关。通过这种方法,RNN的计算结果便具备了记忆之前几次结果的特点。

典型的RNN网路结构如下:

4. 模型训练和结果预测
将上述数据集按4:1的比例随机拆分为训练集和验证集,这是为了防止过度拟合。训练模型。然后将数据的X列作为参数导入模型便可得到预测值,与实际的Y值相比便可得到该模型的优劣。

实现代码

  • 时间间隔序列格式化成所需的训练集格式

  • import pandas as pdimport numpy as npdef create_interval_dataset(dataset, look_back):

  • """ :param dataset: input array of time intervals :param look_back: each training set feature length :return: convert an array of values into a dataset matrix. """

  • dataX, dataY = [], [] for i in range(len(dataset) - look_back):

  • dataX.append(dataset[i:i+look_back])

  • dataY.append(dataset[i+look_back]) return np.asarray(dataX), np.asarray(dataY)


  • df = pd.read_csv("path-to-your-time-interval-file")

  • dataset_init = np.asarray(df) # if only 1 columndataX, dataY = create_interval_dataset(dataset, lookback=3) # look back if the training set sequence length

  • 这里的输入数据来源是csv文件,如果输入数据是来自数据库的话可以参考这里

  • LSTM网络结构搭建

  • import pandas as pdimport numpy as npimport randomfrom keras.models import Sequential, model_from_jsonfrom keras.layers import Dense, LSTM, Dropoutclass NeuralNetwork():

  • def __init__(self, **kwargs):

  • """ :param **kwargs: output_dim=4: output dimension of LSTM layer; activation_lstm='tanh': activation function for LSTM layers; activation_dense='relu': activation function for Dense layer; activation_last='sigmoid': activation function for last layer; drop_out=0.2: fraction of input units to drop; np_epoch=10, the number of epoches to train the model. epoch is one forward pass and one backward pass of all the training examples; batch_size=32: number of samples per gradient update. The higher the batch size, the more memory space you'll need; loss='mean_square_error': loss function; optimizer='rmsprop' """

  • self.output_dim = kwargs.get('output_dim', 8) self.activation_lstm = kwargs.get('activation_lstm', 'relu') self.activation_dense = kwargs.get('activation_dense', 'relu') self.activation_last = kwargs.get('activation_last', 'softmax') # softmax for multiple output

  • self.dense_layer = kwargs.get('dense_layer', 2) # at least 2 layers

  • self.lstm_layer = kwargs.get('lstm_layer', 2) self.drop_out = kwargs.get('drop_out', 0.2) self.nb_epoch = kwargs.get('nb_epoch', 10) self.batch_size = kwargs.get('batch_size', 100) self.loss = kwargs.get('loss', 'categorical_crossentropy') self.optimizer = kwargs.get('optimizer', 'rmsprop') def NN_model(self, trainX, trainY, testX, testY):

  • """ :param trainX: training data set :param trainY: expect value of training data :param testX: test data set :param testY: epect value of test data :return: model after training """

  • print "Training model is LSTM network!"

  • input_dim = trainX[1].shape[1]

  • output_dim = trainY.shape[1] # one-hot label

  • # print predefined parameters of current model:

  • model = Sequential() # applying a LSTM layer with x dim output and y dim input. Use dropout parameter to avoid overfitting

  • model.add(LSTM(output_dim=self.output_dim,

  • input_dim=input_dim,

  • activation=self.activation_lstm,

  • dropout_U=self.drop_out,

  • return_sequences=True)) for i in range(self.lstm_layer-2):

  • model.add(LSTM(output_dim=self.output_dim,

  • input_dim=self.output_dim,

  • activation=self.activation_lstm,

  • dropout_U=self.drop_out,

  • return_sequences=True)) # argument return_sequences should be false in last lstm layer to avoid input dimension incompatibility with dense layer

  • model.add(LSTM(output_dim=self.output_dim,

  • input_dim=self.output_dim,

  • activation=self.activation_lstm,

  • dropout_U=self.drop_out)) for i in range(self.dense_layer-1):

  • model.add(Dense(output_dim=self.output_dim,

  • activation=self.activation_last))

  • model.add(Dense(output_dim=output_dim,

  • input_dim=self.output_dim,

  • activation=self.activation_last)) # configure the learning process

  • model.compile(loss=self.loss, optimizer=self.optimizer, metrics=['accuracy']) # train the model with fixed number of epoches

  • model.fit(x=trainX, y=trainY, nb_epoch=self.nb_epoch, batch_size=self.batch_size, validation_data=(testX, testY)) # store model to json file

  • model_json = model.to_json() with open(model_path, "w") as json_file:

  • json_file.write(model_json) # store model weights to hdf5 file

  • if model_weight_path: if os.path.exists(model_weight_path):

  • os.remove(model_weight_path)

  • model.save_weights(model_weight_path) # eg: model_weight.h5

  • return model

  • 这里写的只涉及LSTM网络的结构搭建,至于如何把数据处理规范化成网络所需的结构以及把模型预测结果与实际值比较统计的可视化,就需要根据实际情况做调整了。

    阅读全文

    与Python神经网络模型预测人口相关的资料

    热点内容
    什么是编译器指令 浏览:219
    微控制器逻辑命令使用什么总线 浏览:885
    程序员在学校里是学什么的 浏览:601
    oraclejava数据类型 浏览:890
    程序员考注册会计师 浏览:957
    怎么使用access的命令按钮 浏览:899
    有点钱app在哪里下载 浏览:832
    博途v15解压后无法安装 浏览:205
    什么是根服务器主机 浏览:438
    安卓手游怎么申请退款 浏览:555
    安卓系统如何分享网页 浏览:278
    ad如何编译pcb工程 浏览:414
    除了滴滴app哪里还能用滴滴 浏览:399
    截图怎么保存文件夹然后压缩 浏览:8
    幻影服务器怎么样 浏览:27
    具体哪些广东公司招程序员 浏览:870
    嵌入式编译器教程 浏览:306
    ssl数据加密传输 浏览:86
    51单片机定时器方式2 浏览:332
    命令行查看开机时间 浏览:814