1. python如何做报表系统
首先我们安装的python和PyQt5要保持一致,要么都是32位或者都是64位。
下载安装,安装完成之后我们记得要设置环境变量。
一路选择“下一步”就可以了。
相关推荐:《Python基础教程》
安装完成之后我们需要验证是否成功。
pyqt5的安装直接安装就可以的,主要更改环境变量~~python_3.5.2Libsite-packagesPyQt5
eric6安装,直接安装,安装完成之后如图,大家也可以安装汉化包版。
打开如图,我们就可以使用这个开发环境设计报表系统了。
然后使用pycharm安装openpyxl包。
这样,我们就可以使用这个开发环境,开发报表系统了。
2. python如何使用帆软报表
方法是从FineReport报表软件中进入:
打开设计器,选择“服务器”,点击“报表平台管理”,即可进入。用户首次进入报表平台,系统会要求填写管理员的账户和密码,设定好后,点击“进入数据决策系统”即可。
3. python在ubuntu13下有没有什么好用的报表啊
有啊,我给你介绍几个,都挺好的。
1.matplotlib,官网:它利用了 Python 下的数值计算模块 Numeric 及 Numarray,克隆了许多 Matlab 中的函数, 用以帮助用户轻松地获得高质量的二维图形。Matplotlib 可以绘制多种形式的图形包括普通的线图,直方图,饼图,散点图以及误差线图等;可以比较方便的定制图形的各种属性比如图线的类型,颜色,粗细,字体的大小 等;它能够很好地支持一部分 TeX 排版命令,可以比较美观地显示图形中的数学公式。个人比较推荐这个类库。查看例子。
2.Cairoplot,官网:Cairoplot在网页上的表现力堪比flex中的图表图形效果。但是这个似乎只能跑在linux平台上
3.Python Google Chart,:该类库是对Google chart API的一个完整封装。
4.PyCha,官网:PyCha可是说是Cairo 类库的一个简单封装,为了是实现轻量级,以及容易使用,当然还做了一些优化等。
5.pyOFC2,它是Open Falsh Library的Python类库。所以图形具有Flash效果,可以随鼠标移动动态显示图标中信息,这是优越于其他静态图示的。
6.Pychart。pyChart是用于创建高品质封装的PostScript,pdf格式,PNG,或SVG图表Python库。
7.PLPlot,官网:PLPlot是用于创建科学图表的跨平台软件包。以C类库为核心,支持各种语言绑定(C, C++, Fortran, java, Python, Perl etc.)。开源免费。
8.reportlab,这个类库支持在pdf中画图表。
4. 如何使用python 统计网站访问量并生成报表
统计网站访问量(访问人次),即PV,需要下载相应的插件。
第1步,将插件文件复制到网站目录(插件下载地址密码:k4x2)
第2步,在模板中相应位置加入以下代码
5. 使用Python做数据分析的优点是什么
最近几年,大数据的发展程度越来越明显,很多企业由于使用了大数据分析使得企业朝着更好的方向发展,这就导致的数据分析行业的人才开始稀缺起来,对于数据分析这个工作中,是需要学会一些编程语言的,比如MATLAB,Python,Java等语言。对于初学者来说,Python是一个不错的语言,Python语言简单易懂,同时对于大数据分析有很明显的帮助。那么使用Python做数据分析的优点是什么呢?一般来说就是简单易学、语言通用、存在科学计算活跃区域等等。
首先说说Python的第一个优点,那就是简单易学。很多学过Java的朋友都知道,Python语法简单的多,代码十分容易被读写,最适合刚刚入门的朋友去学习。我们在处理数据的时候,一般都希望数据能够转化成可运算的数字形式,这样,不管是没学过编程的人还是学过编程的人都能够看懂这个数据。
Python在数据分析和交互、探索性计算以及数据可视化等方面都显得比较活跃,这就是Python作为数据分析的原因之一,python拥有numpy、matplotlib、scikit-learn、pandas、ipython等工具在科学计算方面十分有优势,尤其是pandas,在处理中型数据方面可以说有着无与伦比的优势,已经成为数据分析中流砥柱的分析工具。
Python也具有强大的编程能力,这种编程语言不同于R或者matlab,python有些非常强大的数据分析能力,并且还可以利用Python进行爬虫,写游戏,以及自动化运维,在这些领域中有着很广泛的应用,这些优点就使得一种技术去解决所有的业务服务问题,这就充分的体现的Python有利于各个业务之间的融合。如果使用Python,能够大大的提高数据分析的效率。
python是人工智能时代的通用语言
Python对于如今火热的人工智能也有一定的帮助,这是因为人工智能需要的是即时性,而Python是一种非常简洁的语言,同时有着丰富的数据库以及活跃的社区,这样就能够轻松的提取数据,从而为人工智能做出优质的服务。
通过上面的描述,想必大家已经知道了使用Python做数据分析的优点是什么了吧,Python语言得益于它的简单方便使得在大数据、数据分析以及人工智能方面都有十分明显的存在感,对于数据分析从业者以及想要进入数据分析从业者的人来说,简单易学容易上手的优势也是一个优势,所以,要做好数据分析,一定要学会Python语言。
6. Python操作Excel实现自动化报表
Python操作Excel实现自动化报表
安装
python -m pip install xlrd xlwt xlutils。
基本用法
1.从指定文件路径读取excel表格,进行一定操作,然后保存到另一个excel文件:result.xlsx
import xlwt
import xlrd
from xlutils. import
import pandas as pd
from pandas import DataFrame,Series
import os
os.chdir('./')
# 从指定文件路径读取excel表格
df = pd.read_excel('D:/mypaper/data/data.xlsx')
# 查看df内容
# 根据age算出出生年份,增加一列
import datetime
import os
year = datetime.datetime.now().year#获取当前系统时间对应的年份
df['birth'] = year-df['age']
df.to_excel('result.xlsx')#保存到当前工作目录,可以用os.getcwd()查看
#查看下此时df的内容,可以看到已经生成了birth这一列。
2.单元格操作
# 定义方法:读取指定目录下Excel文件某个sheet单元格的值
def excel_read(file_path,table,x,y):
data = xlrd.open_workbook(file_path)
table = data.sheet_by_name(table)
return table.cell(y,x).value
# 定义方法:单元格值及样式
write_obj_list = []
def concat_obj(cols,rows,value):
write_obj_list.append({'cols':cols,'rows':rows,'value':value,
'style':xlwt.easyxf('font: name 宋体,height 280;alignment: horiz centre')})
# 定义方法:合并单元格
def merge_unit(srows,erows,scols,ecols,value):
write_obj_list.append({'id':'merge','srows':srows,'erows':erows,'scols':scols,
'ecols':ecols,'value':value,'style':xlwt.easyxf('font: name 宋体,height 280;alignment: horiz centre')})
# 定义方法:更新excel
excel_update(file_path,write_obj_list,new_path):
old_excel = xlrd.open_workbook(file_path, formatting_info=True)
#管道作用
new_excel = (old_excel)
'''
通过get_sheet()获取的sheet有write()方法
'''
sheet1 = new_excel.get_sheet(0)
'''
1代表是修改第几个工作表里,从0开始算是第一个。此处修改第一个工作表
'''
for item in write_obj_list:
if 'id' not in item.keys():
if 'style' in item.keys():
sheet1.write(item['rows'], item['cols'], item['value'],item['style'])
else:
sheet1.write(item['rows'], item['cols'], item['value'])
else:
if 'style' in item.keys():
sheet1.write_merge(item['srows'],item['erows'],item['scols'], item['ecols'], item['value'],item['style'])
else:
sheet1.write_merge(item['srows'],item['erows'],item['scols'], item['ecols'], item['value'])
'''
如果报错 dict_items has no attributes sort
把syle源码中--alist.sort() 修改为----> sorted(alist)
一共修改2次
'''
new_excel.save(file_path)
#参数详解
# srows:合并的起始行数
# erows:合并的结束行数
# scols:合并的起始列数
# ecols:合并的结束列数
# value:合并单元格后的填充值
# style:合并后填充风格:
# font: name 宋体
# height 280;
# alignment: horiz centre
# ... 与excel操作基本保持一致
(注意:该方法仅仅是将需要直行的动作保存到一个list中,真正的动作还未执行,执行动作是发生在excel_update方法中)
最终调用excel_update方法,传入每个单元格需要进行的操作和填充值的write_obj_list以及文件保存路径file_path,就可以在当前工作目录下生成想要的Excel结果文件。
注意:
1.write_obj_list支持用户自定义
2.write_obj_list也可以是根据excel_read方法读取现有待修改的excel文件(可以维持原有表格的格式)而生成
End
7. python 打印报表 有什么好的报表软件吗
你好,你可以用python 去调用fastreport.dll。下面是一个例子。
import clr
import threading
def fastRepot_run():
report = Report()
report.Load("test.frx")
report.Show();
clr.FindAssembly("FastReport.dll")
from FastReport import *
threading.Thread(target=fastRepot_run).start()
8. 用python求报表的一列的和:
你传入的instance是一行,你要把所有的行作为一个iterable(例如一个列表)传入才行
正确的程序有如下形式
def calTotalAmount(dataSet):
ttlamount = Decimal(0);
for instance in dataSet:
ttlamount += instance.totalamount
return "%.3f" % ttlamount
9. 如何使用python 统计网站访问量并生成报表
分析网站日志跟Python语言没多大关系吧,再说目前网上分析网站日志的软件一大把,很多教你如何分析网络蜘蛛IP,来的蜘蛛来抓取哪个页面,以及停留时间,并非非常深奥的东西
10. 如何使用python 统计网站访问量并生成报表
统计网站访问量
统计出每个IP的访问量有多少?(从日志文件中查找)
#!/usr/bin/env python
#!coding=utf-8
list = []
f = file('/tmp/1.log')
str1 = f.readlines()
f.close()
for i in str1:
ip = i.split()[0] //split()通过指定分隔符对字符串进行切片,默认为所有的空字符;split分隔后是一个列表,[0]表示取其第一个元素;
list.append(ip)//追加
list_num = set(list)
for j in list_num:
num = list.count(j)
print '%s : %s' %(j,num)
生成报表
#_*_coding:utf-8_*_
import MySQLdb
import xlwt
from datetime import datetime
def get_data(sql):
# 创建数据库连接.
conn = MySQLdb.connect(host='127.0.0.1',user='root'\
,passwd='123456',db='test',port=3306,charset='utf8')
# 创建游标
cur = conn.cursor()
# 执行查询,
cur.execute(sql)
# 由于查询语句仅会返回受影响的记录条数并不会返回数据库中实际的值,所以此处需要fetchall()来获取所有内容。
result = cur.fetchall()
#关闭游标
cur.close()
#关闭数据库连接
conn.close
# 返给结果给函数调用者。
return result
def write_data_to_excel(name,sql):
# 将sql作为参数传递调用get_data并将结果赋值给result,(result为一个嵌套元组)
result = get_data(sql)
# 实例化一个Workbook()对象(即excel文件)
wbk = xlwt.Workbook()
# 新建一个名为Sheet1的excel sheet。此处的cell_overwrite_ok =True是为了能对同一个单元格重复操作。
sheet = wbk.add_sheet('Sheet1',cell_overwrite_ok=True)
# 获取当前日期,得到一个datetime对象如:(2016, 8, 9, 23, 12, 23, 424000)
today = datetime.today()
# 将获取到的datetime对象仅取日期如:2016-8-9
today_date = datetime.date(today)
# 遍历result中的没个元素。
for i in xrange(len(result)):
#对result的每个子元素作遍历,
for j in xrange(len(result[i])):
#将每一行的每个元素按行号i,列号j,写入到excel中。
sheet.write(i,j,result[i][j])
# 以传递的name+当前日期作为excel名称保存。
wbk.save(name+str(today_date)+'.xls')
# 如果该文件不是被import,则执行下面代码。
if __name__ == '__main__':
#定义一个字典,key为对应的数据类型也用作excel命名,value为查询语句
db_dict = {'test':'select * from student'}
# 遍历字典每个元素的key和value。
for k,v in db_dict.items():
# 用字典的每个key和value调用write_data_to_excel函数。
write_data_to_excel(k,v)