A. 图形图像处理对编程的要求高吗我是女生,自我感觉不很擅长编程,
要求不高
图像处理难度在于研究各种对图像处理的算法原理,这种算法代码网上很多源码,但是原理的知识点比较多而且还是有难度的,图像的存储采集、灰阶二值处理、图像格式转置以及多种图像变换算法等,主要是数学要有点基础,否则理解很吃力
B. 图像处理专业一定要会编程吗
图像处理专业不光是ps和flah 这是多媒体技术。
图像处理实际上是信号处理,涉及很多知识,模式识别,信号处理,统计学习等
处理大量的图像数据不用计算机编程处理还能怎么办。
比如jpg格式的图象就设计信号变换。
C. 图像分割技术论文
图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!
图像分割技术研究
摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。
关键词:图像分割、阈值、边缘检测、区域分割
中图分类号: TN957.52 文献标识码: A
1引言
随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。
2图像分割方法
图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。
2.1基于灰度特征的阈值分割方法
阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。
这类方法主要包括以下几种:
(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。
(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。
(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。
2.2 边缘检测分割法
基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。
2.3基于区域的分割方法
基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。
区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。
2.4结合特定工具的图像分割技术
20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。
2.4.1基于数学形态学的分割算法
分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。
2.4.2基于模糊数学的分割算法
目前,模糊技术在图像分割中应用的一个显着特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。
这类方法主要有广义模糊算子与模糊阈值法两种分割算法。
(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。
(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。
2.4.3基于遗传算法的分割方法
此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。
2.4.4基于神经网络分割算法
人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。
2.5图像分割中的其他方法
前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。
(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。
(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的
(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。
(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。
3图像分割性能的评价
图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。
4图像分割技术的发展趋势
随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。
参考文献
[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003
[2] 章毓晋.图像分割[M].北京:科学出版社,2001.
[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.
[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.
点击下页还有更多>>>图像分割技术论文
D. 如何用深度学习实现卫星图像分割与识别
深度学习在物体识别中最重要的进展体现在ImageNetILSVRC3挑战中的图像分类任务。传统计算机视觉方法在此测试集上最低的错误率是26.172%。2012年,欣顿的研究小组利用卷积网络把错误率降到了15.315%。此网络结构被称为AlexNet,与传统的卷积网络相比,它有三点与众不同之处:首先,AlexNet采用了dropout的训练策略,在训练过程中将输入层和中间层的一些神经元随机置零。这模拟了噪音对输入数据的各种干扰使一些神经元对一些视觉模式产生漏检的情况。Dropout使训练过程收敛得更慢,但得到的网络模型更加鲁棒。其次,AlexNet采用整流线型单元作为非线性的激发函数。这不仅大大降低了计算的复杂度,而且使神经元的输出具有稀疏的特征,对各种干扰更加鲁棒。第三,AlexNet通过对训练样本镜像映射和加入随机平移扰动,产生了的训练样本,减少了过拟合。在ImageNetILSVRC2013比赛中,排名前20的小组使用的都是深度学习技术。获胜者是纽约大学罗伯·费格斯(RobFergus)的研究小组,所采用的深度模型是卷积网络,并对网络结构作了进一步优化,错误率为11.197%,其模型称作Clarif。在ILSVRC2014比赛中,获胜者GooLeNet[18]将错误率降到了6.656%。GooLeNet突出的特点是大大增加了卷积网络的深度,超过了20层,这在此之前是不可想象的。很深的网络结构给预测误差的反向传播带了困难,这是因为预测误差是从最顶层传到底层的,传到底层的误差很小,难以驱动底层参数的更新。GooLeNet采取的策略是将监督信号直接加到多个中间层,这意味着中间层和底层的特征表示也要能够对训练数据进行准确分类。如何有效地训练很深的网络模型仍是未来研究的一个重要课题。虽然深度学习在ImageNet上取得了巨大成功,但是很多应用的训练集是较小的,在这种情况下,如何应用深度学习呢?有三种方法可供参考:(1)可以将ImageNet上训练得到的模型作为起点,利用目标训练集和反向传播对其进行继续训练,将模型适应到特定的应用[10]。此时ImageNet起到预训练的作用。(2)如果目标训练集不够大,可以将底层的网络参数固定,沿用ImageNet上的训练集结果,只对上层进行更新。这是因为底层的网络参数是最难更新的,而从ImageNet学习得到的底层滤波器往往描述了各种不同的局部边缘和纹理信息,而这些滤波器对一般的图像有较好的普适性。(3)直接采用ImageNet上训练得到的模型,把最高的隐含层的输出作为特征表达,代替常用的手工设计的特征。
E. 图像处理与模式识别这个方向适合女生吗具体是做什么的呢
这个专业不属于那种性别差异明显的专业,相反我倒觉得挺适合女生的。
因为这个专业多半是在做算法或者编程,理论性强。图像处理本身就是属于比较有发展潜力的方向,具体细分的话有可以分很多的分支,比如图像的分割、图像的边缘提取、超分辨(很火)、识别、图像分析等等。这个方向对研究生的要求重点在以下几个方面:1.英语基础良好,将来要阅读大量的国外文献 2.数学素养要高,将来设计算法什么的对这方面要求较高,好多图像处理都用到随机统计理论、模糊理论、优化等等数学基础 3.编程能力要强,其实实验室的话多半是用matlab来编制程序的,这个语言本身就比较简单,上手比较快,重点前两项。
合理的权衡一下吧,希望对你有所帮助!
F. 想从一张Jpg图像中识别出若干黑色区域,用于对答题卡的涂卡部分进行自动算分。求Java图像分割与识别技术
其实不用想得太难。
处理图像像素用BufferImage类。
首先,你得确定指定的答题卡涂卡的每个可涂选点的物理像素位置,这一步可以用一张空白的答题卡进行人工采集数据,做成一个数据库形式就可以了。定义好这些可涂选点定义对应的选项A\B\C\D。
然后你从扫描仪得到图像,把图像载入,进行像素分析,假设扫描答题卡放置的方向是正确的,因此不用考虑识别答题卡放置方向。再来,好样的,从之前采集的数据库得到一个可涂选的像素坐标位置,用此去识别答题卡上对应的涂选框是否涂选,以此类推逐行识别,因为你之前已经在数据库里面定义好了对应的涂选点的含义了,在这里只要往数据库一查就知道(考生涂选的是什么)了!
下一步只要将试卷上考生涂选的选项转换为数据保存到考生考试数据库。
至于如何识别考生涂选的方块,一般答题卡的涂选选框就是一个固定的大小,你只要知道它高多少像素,宽多少像素。考生涂选选项笔迹时一般都和这个选框大小的区域差不多,只要统计这个位置之内的比较黑的颜色数量占此涂选框的面积%50以上,可以认为这个是考试涂选的 选项。
还有个建议:一般答题卡上面都有一些用来给答题卡识别软件使用的定位点,你抓住这些规则就应该能更准确定位到答题卡涂选选项的位置。
G. 学习图像识别技术需要什么基础知识有没有推荐教材
您好:
我觉得最基本的图像处理的图像,你应该有图像处理等知识有一定的了解(包括图像平滑去噪,图像增强,图像分割和图像变换)应该是的基础上,模式识别这个我建议你看到的图像处理冈萨雷斯这本书,用于模式识别,迪达写道,“模式分类”这本权威的书,我觉得模式识别领域仍然有很多的东西可以挖掘,毕竟他做到了没有完美的常规固定经典物理学理论,这本书是很多理论都有自己的缺点加以改进,你先学这本书呈现(如贝叶斯决策理论,参数和非参数估计的基本理论,等),要学会去研究这些理论这些问题。有一个数学基础,相关的数学图形识别的基础上,应该有:高等数学,线性代数,概率论,随机过程优化方法,等等。你有数学基础,科学这些应该不是难事。
希望对你有用!
H. 图像处理与模式识别算法工程师需要哪些基础
图像和模式识别算法工程师需要相当好的数学基础,门槛较高,当然我指的是你想真正在这个行业立足,随便找一本模式识别或者图像处理的书看看就知道难度了。不然各大公司也不会校招就开出30w的年薪给这类职业
I. 学图像处理困难吗 有c编程基础的,学会一般需要多久呢
一般需要学习2年才能入门吧,第一年基础的图像知识,第二年实践练习
J. 计算机专业翻译--图像分割
[ Abstract ]: The picture division is refers the picture divides intoeach characteristic region, and withdraws feels the interest goal thetechnology and the process. The picture division is pictureprocessing, the pattern recognition and the artificial intelligenceand so on in many domains is extremely important also the extremelydifficult question. The picture division for certain sub- pictures,and using each sub- picture characteristic and between them therelational description picture, regarding the picture recognition andthe explanation, the scenery analysis as well as picture piecemealprocessing and the memory all has the very big significance. Thepicture division basically is carries on classified to the pictureelement the process, the commonly used division method has thegradation rank threshold value law, the region fresh good methodyielding long-term benefits and the edge examines the measurement, thespectrum and the spatial classification. CT (the Computed Tomographyabbreviation, namely computer X beam body level photography) firstuses in the skull cerebrum disease to diagnose, latter expands to thegeneral physical checkup, is X in a radioactivity Great Revolution. Itis with X beam to the human body scanning, obtains the information,obtains the reconstruction picture after electronic accounting machineprocessing. This article reviews and summarized the picture divisionmethod which some knew very well, from the principle, the applicationand the division effect has carried on the analysis to the classicspicture division method, simultaneously has made the briefintroction to the position chart file organization and the CTpicture imagery principle, and discusses quite has now been popularbased on the component software development thought. Developed in thisfoundation with VC++6.0 has realized to brain skull CT picture basicprocessing and the division function. [ Essential character ]: CT picture position chart operation pictureprocessing picture division based on component software development