导航:首页 > 编程语言 > python验证码分割

python验证码分割

发布时间:2022-10-28 20:14:50

‘壹’ python pil 怎么去掉验证码线条

一、验证码识别的概念

机器识别图片主要的三个步骤为消去背景、切割字符、识别字符。而现有的字符验证码也针对这三个方面来设计强壮的验证码。

以下简图帮助大家理解验证码识别的流程:

二、处理流程

其中最为关键的就是好图像处理这一步了。图像处理功能模块包括图像的灰度化、二值化、离散噪声点的去除、倾斜度校正、字符的切割、图像的归一化等图像处理技术 。

1、 图像的灰度化
由于 256 色的位图的调色板内容比较复杂,使得图像处理的许多算法都没有办法展开,因此有必要对它进行灰度处理。所谓灰度图像就是图像的每一个像素的 R、G、B 分量的值是相等的。彩色图像的每个像素的 R、G、B 值是不相同的,所以显示出红绿蓝等各种颜色。灰度图像没有这些颜色差异,有的只是亮度上的不同。灰度值大的像素点比较亮(像素值最大为 255,为白色),反之比较暗(像素值最小为 0,为黑色)。图像灰度化有各种不同的算法,比较直接的一种就是给像素的 RGB 值各自一个加权系数,然后求和;同时还要对调色板表项进行相应的处理。

2、 图像的二值化
要注意的是,最后得到的结果一定要归一到 0-255 之内。因为这是每个字节表示
图像数据的极限。

3、 去噪
图像可能在生成、传输或者采集过程中夹带了噪声,去噪声是图像处理中常用的手法。通常去噪声用滤波的方法,比如中值滤波、均值滤波。但是那样的算法不适合用在处理字符这样目标狭长的图像中,因为在滤波的过程中很有可能会去掉字符本身的像素。

一个采用的是去除杂点的方法来进行去噪声处理的。具体算法如下:扫描整个图像,当发现一个黑色点的时候,就考察和该黑色点间接或者直接相连接的黑色点的个数有多少,如果大于一定的值,那就说明该点不是离散点,否则就是离散点,把它去掉。在考察相连的黑色点的时候用的是递归的方法。此处,我简单的用python实现了,大家可以参考以下。

#coding=utf-8"""
creat time:2015.09.14
"""import cv2import numpy as npfrom matplotlib import pyplot as pltfrom PIL import Image,ImageEnhance,ImageFilter

img_name = '2+.png'#去除干扰线im = Image.open(img_name)#图像二值化enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(2)
im = im.convert('1')
data = im.getdata()
w,h = im.size#im.show()black_point = 0for x in xrange(1,w-1): for y in xrange(1,h-1):
mid_pixel = data[w*y+x] #中央像素点像素值
if mid_pixel == 0: #找出上下左右四个方向像素点像素值
top_pixel = data[w*(y-1)+x]
left_pixel = data[w*y+(x-1)]
down_pixel = data[w*(y+1)+x]
right_pixel = data[w*y+(x+1)] #判断上下左右的黑色像素点总个数
if top_pixel == 0:
black_point += 1
if left_pixel == 0:
black_point += 1
if down_pixel == 0:
black_point += 1
if right_pixel == 0:
black_point += 1
if black_point >= 3:
im.putpixel((x,y),0) #print black_point
black_point = 0im.show()041424344

原验证码:

4、分割
图像中一般会含有多个数字,识别的时候只能根据每个字符的特征来进行判断,所以还要进行字符切割的工作。这一步工作就是把图像中的字符独立的切割出来。

具体的算法如下:

第一步,先自下而上对图像进行逐行扫描直至遇到第一个黑色的像素点。记录下来。然后再自上而下对图像进行逐行扫描直至找到第一个黑色像素,这样就找到图像大致的高度范围。

第二步,在这个高度范围之内再自左向右逐列进行扫描,遇到第一个黑色像素时认为是字符切割的起始位置,然后继续扫描,直至遇到有一列中没有黑色像素,则认为这个字符切割结束,然后继续扫描,按照上述的方法一直扫描直至图像的最右端。这样就得到了每个字符的比较精确宽度范围。

第三步,在已知的每个字符比较精确的宽度范围内,按照第一步的方法,分别进行自上而下和自下而上的逐行扫描来获取每个字符精确的高度范围。

5、 图像的归一化
因为采集的图像中字符大小有可能存在较大的差异,或者是经过切割后的字符尺寸不统一,而相对来说,统一尺寸的字符识别的标准性更强,准确率自然也更高,归一化图像就是要把原来各不相同的字符统一到同一尺寸,在系统实现中是统一到同一高度,然后根据高度来调整字符的宽度。具体算法如下:先得到原来字符的高度,跟系统要求的高度做比较,得出要变换的系数,然后根据得到的系数求得变换后应有得宽度。在得到宽度和高度之后,把新图像里面的点按照插值的方法映射到原图像中。

不少人认为把每个字符图像归一化为 5×9 像素的二值图像是最理想的,因为图像的尺寸越小,识别速度就越高,网络训练也越快。而实际上,相对于要识别的字符图像, 5×9 像素图太小了。归一化后,图像信息丢失了很多,这时进行图像识别,准确率不高。实验证明,将字符图像归一化为 10×18 像素的二值图像是现实中是比较理想的,达到了识别速度快和识别准确率高的较好的平衡点。

三、识别

图像识别包括特征提取、样本训练和识别三大块内容。

验证码识别其中最为关键的就是去噪和分割,这对你的训练和识别的精度都有着很大的影响。这里只讲了大致的流程,其中每个细节都有很多工作要做,这里码字也很难讲清楚,大家可以以这个流程为主线,一步步的实现,最终也就能完成你的需求。

‘贰’ python如何识别验证码

我们首先识别最简单的一种验证码,即图形验证码。这种验证码最早出现,现在也很常见,一般由4位字母或者数字组成。例如,中国知网的注册页面有类似的验证码,页面如下所示:

表单中最后一项就是图形验证码,我们必须完全正确输入图中的字符才可以完成注册。

更多有关验证码的知识,可以参考这些文章:

Python3爬虫进阶:识别图形验证码

Python3爬虫进阶:识别极验滑动验证码

Python3爬虫进阶:识别点触点选验证码

Python3爬虫进阶:识别微博宫格验证码

·本节目标以知网的验证码为例,讲解利用OCR技术识别图形验证码的方法。

·准备工作识别图形验证码需要库tesserocr,以mac安装为例:在mac下,我们首先使用Homebrew安装ImageMagick和tesseract库: brew install imagemagickbrew install tesseract 接下来再安装tesserocr即可:pip3 install tesserocr pillow这样我们就完成了 tesserocr的安装。

·获取验证码为了便于实验,我们先将验证码的图片保存到本地。打开开发者工具,找到验证码元素。验证码元素是一张图片,它的ser属 性是CheckCode.aspk。所以我们直接打开如下链接就可以看到一个验证码,右键保存即可,将其命名为code.jpg:

这样我们就得到一张验证码图片,以供测试识别使用。

相关推荐:《Python教程》

识别测试

接下来新建一个项目,将验证码图片放到项目根目录下,用tesserocr库识别该验证码,代码如下所示:

这里我们新建了一个Image对戏那个,调用了tesserocr的image_to_text( )方法。传入该Image对象即可完成识别,实现过程非常简单,结果如下:

我们可以看到,识别的结果和实际结果有偏差,这是因为验证码内的多余线条干扰了图片的识别。

另外,tesserocr还有一个更加简单的方法,这个方法可以直接将图片文件转为字符串,代码如下:

不过这种方法的识别效果不如上一种的好。

验证码处理

对于上面的图片,我们可以看到其实并没有完全识别正确,所以我们需要对图像作进一步的处理,如灰度转换、二值化等操作。

我们可以利用Image对象的convert( )方法参数传入L,即可将图片转化为灰度图像,代码如下:

传入1即可将图片进行二值化处理,如下所示:

我们还可以指定二值化的阈值。上面的方法采用的是默认阈值127。不过我们不能直接转化原图,要将原图先转化为灰度图像,然后再指定二值化阈值,代码如下:

在这里,变量threshold代表二值化阈值,阈值设置为160,之后我们来看看我们的结果:

我们可以看到现在的二维码就比较方便我们进行识别了;那么对于一些有干扰的图片,我们做一些灰度和二值化处理,这会提高图片识别的正确率。

‘叁’ python 机器学习cross_validation进行分割

分隔出来是 (1307*0.2 )*1 和(1307*0.8 )*1 的两个ndarray

‘肆’ python中分割字符串

imkow正解,直接转list最好,否则自己写list comprehension其实隐含的还是把字符串当list用,多此一举

‘伍’ python数据分割

str='124,ad,"33,412"'
st=''
foriinstr:
i=i.strip('"')
st+=i
stt=''.join(st)
sttt=''.join(stt[0:9]+stt[10:])
list=sttt.split(',')
print(list)

结果:['124', 'ad', '33412']

‘陆’ python3 怎么解析验证码

方法1:找个验证码识别程序,自动识别方法2:自己用PIL写一个方法3:让用户手工输入验证码。这个比较简单方法4:让后台程序开一个后门,让你绕过验证码方法5:直接使用cookie,这样就不用登陆了

‘柒’ 如何对中文验证码中的文字进行拆分,旋转和切割(python),为了容易识别一点

#-*-coding:utf-8-*-

importImage,ImageDraw,ImageFont

importrandom

importmath,string

classRandomChar():

"""用于随机生成汉字"""

@staticmethod

defUnicode():

val=random.randint(0x4E00,0x9FBF)

returnunichr(val)

@staticmethod

defGB2312():

head=random.randint(0xB0,0xCF)

body=random.randint(0xA,0xF)

tail=random.randint(0,0xF)

val=(head<<8)|(body<<4)|tail

str="%x"%val

returnstr.decode('hex').decode('gb2312')

classImageChar():

def__init__(self,fontColor=(0,0,0),

size=(100,40),

fontPath='wqy.ttc',

bgColor=(255,255,255),

fontSize=20):

self.size=size

self.fontPath=fontPath

self.bgColor=bgColor

self.fontSize=fontSize

self.fontColor=fontColor

self.font=ImageFont.truetype(self.fontPath,self.fontSize)

self.image=Image.new('RGB',size,bgColor)

defrotate(self):

self.image.rotate(random.randint(0,30),expand=0)

defdrawText(self,pos,txt,fill):

draw=ImageDraw.Draw(self.image)

draw.text(pos,txt,font=self.font,fill=fill)

deldraw

defrandRGB(self):

return(random.randint(0,255),

random.randint(0,255),

random.randint(0,255))

defrandPoint(self):

(width,height)=self.size

return(random.randint(0,width),random.randint(0,height))

defrandLine(self,num):

draw=ImageDraw.Draw(self.image)

foriinrange(0,num):

draw.line([self.randPoint(),self.randPoint()],self.randRGB())

deldraw

defrandChinese(self,num):

gap=5

start=0

foriinrange(0,num):

char=RandomChar().GB2312()

x=start+self.fontSize*i+random.randint(0,gap)+gap*i

self.drawText((x,random.randint(-5,5)),RandomChar().GB2312(),self.randRGB())

self.rotate()

self.randLine(18)

defsave(self,path):

self.image.save(path)


‘捌’ 如何利用Python做简单的验证码识别

1摘要

验证码是目前互联网上非常常见也是非常重要的一个事物,充当着很多系统的防火墙功能,但是随时OCR技术的发展,验证码暴露出来的安全问题也越来越严峻。本文介绍了一套字符验证码识别的完整流程,对于验证码安全和OCR识别技术都有一定的借鉴意义。

然后经过了一年的时间,笔者又研究和get到了一种更强大的基于CNN卷积神经网络的直接端到端的验证识别技术(文章不是我的,然后我把源码整理了下,介绍和源码在这里面):

基于python语言的tensorflow的‘端到端’的字符型验证码识别源码整理(github源码分享)

2关键词

关键词:安全,字符图片,验证码识别,OCR,Python,SVM,PIL

3免责声明

本文研究所用素材来自于某旧Web框架的网站完全对外公开的公共图片资源。

本文只做了该网站对外公开的公共图片资源进行了爬取,并未越权做任何多余操作。

本文在书写相关报告的时候已经隐去漏洞网站的身份信息。

本文作者已经通知网站相关人员此系统漏洞,并积极向新系统转移。

本报告的主要目的也仅是用于OCR交流学习和引起大家对验证安全的警觉。

4引言

关于验证码的非技术部分的介绍,可以参考以前写的一篇科普类的文章:

互联网安全防火墙(1)--网络验证码的科普

里面对验证码的种类,使用场景,作用,主要的识别技术等等进行了讲解,然而并没有涉及到任何技术内容。本章内容则作为它的技术补充来给出相应的识别的解决方案,让读者对验证码的功能及安全性问题有更深刻的认识。

5基本工具

要达到本文的目的,只需要简单的编程知识即可,因为现在的机器学习领域的蓬勃发展,已经有很多封装好的开源解决方案来进行机器学习。普通程序员已经不需要了解复杂的数学原理,即可以实现对这些工具的应用了。

主要开发环境:

‘玖’ python抓取网页时是如何处理验证码的

python抓取网页时是如何处理验证码的?下面给大家介绍几种方法:

1、输入式验证码

这种验证码主要是通过用户输入图片中的字母、数字、汉字等进行验证。如下图:

解决思路:这种是最简单的一种,只要识别出里面的内容,然后填入到输入框中即可。这种识别技术叫OCR,这里我们推荐使用Python的第三方库,tesserocr。对于没有什么背影影响的验证码如图2,直接通过这个库来识别就可以。但是对于有嘈杂的背景的验证码这种,直接识别识别率会很低,遇到这种我们就得需要先处理一下图片,先对图片进行灰度化,然后再进行二值化,再去识别,这样识别率会大大提高。

相关推荐:《Python入门教程》

2、滑动式验证码

这种是将备选碎片直线滑动到正确的位置,如下图:

解决思路:对于这种验证码就比较复杂一点,但也是有相应的办法。我们直接想到的就是模拟人去拖动验证码的行为,点击按钮,然后看到了缺口的位置,最后把拼图拖到缺口位置处完成验证。

第一步:点击按钮。然后我们发现,在你没有点击按钮的时候那个缺口和拼图是没有出现的,点击后才出现,这为我们找到缺口的位置提供了灵感。

第二步:拖到缺口位置。

我们知道拼图应该拖到缺口处,但是这个距离如果用数值来表示?

通过我们第一步观察到的现象,我们可以找到缺口的位置。这里我们可以比较两张图的像素,设置一个基准值,如果某个位置的差值超过了基准值,那我们就找到了这两张图片不一样的位置,当然我们是从那块拼图的右侧开始并且从左到右,找到第一个不一样的位置时就结束,这是的位置应该是缺口的left,所以我们使用selenium拖到这个位置即可。

这里还有个疑问就是如何能自动的保存这两张图?

这里我们可以先找到这个标签,然后获取它的location和size,然后 top,bottom,left,right = location['y'] ,location['y']+size['height']+ location['x'] + size['width'] ,然后截图,最后抠图填入这四个位置就行。

具体的使用可以查看selenium文档,点击按钮前抠张图,点击后再抠张图。最后拖动的时候要需要模拟人的行为,先加速然后减速。因为这种验证码有行为特征检测,人是不可能做到一直匀速的,否则它就判定为是机器在拖动,这样就无法通过验证了。

3、点击式的图文验证和图标选择

图文验证:通过文字提醒用户点击图中相同字的位置进行验证。

图标选择: 给出一组图片,按要求点击其中一张或者多张。借用万物识别的难度阻挡机器。

这两种原理相似,只不过是一个是给出文字,点击图片中的文字,一个是给出图片,点出内容相同的图片。

这两种没有特别好的方法,只能借助第三方识别接口来识别出相同的内容,推荐一个超级鹰,把验证码发过去,会返回相应的点击坐标。

然后再使用selenium模拟点击即可。具体怎么获取图片和上面方法一样。

4、宫格验证码

这种就很棘手,每一次出现的都不一样,但是也会出现一样的。而且拖动顺序都不一样。

但是我们发现不一样的验证码个数是有限的,这里采用模版匹配的方法。我觉得就好像暴力枚举,把所有出现的验证码保存下来,然后挑出不一样的验证码,按照拖动顺序命名,我们从左到右上下到下,设为1,2,3,4。上图的滑动顺序为4,3,2,1,所以我们命名4_3_2_1.png,这里得手动搞。当验证码出现的时候,用我们保存的图片一一枚举,与出现这种比较像素,方法见上面。如果匹配上了,拖动顺序就为4,3,2,1。然后使用selenium模拟即可。

‘拾’ 如何利用Python做简单的验证码识别

最近在折腾验证码识别。最终的脚本的识别率在92%左右,9000张验证码大概能识别出八千三四百张左右。好吧,其实是验证码太简单。下面就是要识别的验证码。

接下来对图片进行分割。遍历图片中所有像素点,计算每一列像素为0的点的个数(jd)。对于相邻两列,若其中一列jd=0,而另一列jd!=0,则可以认为这一列是验证码中字符边界,由此对验证码进行分割。这样分割能达到比较好的效果,分割后得到的字符图片几乎能与模板完全相同。

(Width,Height) = img2.size
pix2 = img2.load()
x0 = []
y0 = []for x in range(1,Width):
jd = 0
# print x
for y in range(1,Height): # print y
if pix2[x,y] == 0:
jd+=1
y0.append(jd) if jd > 0:
x0.append(x)#分别对各个字符边界进行判断,这里只举出一个 for a in range(1,Width): if (y0[a] != 0)&(y0[a+1] != 0):
sta1 = a+1

分割完成后,对于识别,目前有几种方法。可以遍历图片的每一个像素点,获取像素值,得到一个字符串,将该字符串与模板的字符串进行比较,计算汉明距离或者编辑距离(即两个字符串的差异度),可用Python-Levenshtein库来实现。

我采用的是比较特征向量来进行识别的。首先设定了4个竖直特征向量,分别计算第0、2、4、6列每一列像素值为0的点的个数,与模板进行比较,若小于阈值则认为该字符与模板相同。为了提高识别率,如果通过竖直特征向量未能识别成功,引入水平特征向量继续识别,原理与竖直特征向量相同。

另外,还可以通过局部特征进行识别。这对于加入了旋转干扰的验证码有很好效果。由于我写的脚本识别率已经达到了要求,所以并没有用到这个。

最后的结果是这样的:

最终在模板库只有25条的情况下,识别率在92%左右(总共测试了一万六千张验证码)。好吧,只能说验证码太简单。。

以上。

阅读全文

与python验证码分割相关的资料

热点内容
android非阻塞socket 浏览:356
编译系统概念 浏览:448
天眼通app能做什么 浏览:555
魅族手机怎么加密图库 浏览:8
rpa编译器 浏览:570
车载云服务器记录 浏览:738
四川金星压缩机制造有限公司 浏览:53
移动平台图片压缩算法 浏览:35
银行项目java 浏览:569
怎样将pdf转换为ppt 浏览:595
纯净服务器怎么开服 浏览:286
比泽尔压缩机如何换油 浏览:818
编译链接如何生成exe 浏览:73
jre编译运行环境 浏览:271
怎么解压镜像系统 浏览:190
程序员求助国企 浏览:838
云服务器网址租用多少钱 浏览:942
行车记录仪安卓版怎么用 浏览:500
java是不是数字 浏览:183
php模拟浏览器环境 浏览:353