导航:首页 > 编程语言 > python数据分析及标签

python数据分析及标签

发布时间:2022-11-02 09:28:43

python数据分析 | 数据描述性分析

首先导入一些必要的数据处理包和可视化的包,读文档数据并通过前几行查看数据字段。

对于我的数据来说,由于数据量比较大,因此对于缺失值可以直接做删除处理。

得到最终的数据,并提取需要的列作为特征。

对类别数据进行统计:

类别型字段包括location、cpc_class、pa_country、pa_state、pa_city、assignee六个字段,其中:

单变量统计描述是数据分析中最简单的形式,其中被分析的数据只包含一个变量,不处理原因或关系。单变量分析的主要目的是通过对数据的统计描述了解当前数据的基本情况,并找出数据的分布模型。
单变量数据统计描述从集中趋势上看,指标有:均值,中位数,分位数,众数;从离散程度上看,指标有:极差、四分位数、方差、标准差、协方差、变异系数,从分布上看,有偏度,峰度等。需要考虑的还有极大值,极小值(数值型变量)和频数,构成比(分类或等级变量)。

对于数值型数据,首先希望了解一下数据取值范围的分布,因此可以用统计图直观展示数据分布特征,如:柱状图、正方图、箱式图、频率多边形和饼状图。

按照发布的时间先后作为横坐标,数值范围的分布情况如图所示.

还可以根据最终分类的结果查看这些数值数据在不同类别上的分布统计。

箱线图可以更直观的查看异常值的分布情况。

异常值指数据中的离群点,此处定义超出上下四分位数差值的1.5倍的范围为异常值,查看异常值的位置。

参考:
python数据分析之数据分布 - yancheng111 - 博客园
python数据统计分析 -

科尔莫戈罗夫检验(Kolmogorov-Smirnov test),检验样本数据是否服从某一分布,仅适用于连续分布的检验。下例中用它检验正态分布。

在使用k-s检验该数据是否服从正态分布,提出假设:x从正态分布。最终返回的结果,p-value=0.9260909172362317,比指定的显着水平(一般为5%)大,则我们不能拒绝假设:x服从正态分布。这并不是说x服从正态分布一定是正确的,而是说没有充分的证据证明x不服从正态分布。因此我们的假设被接受,认为x服从正态分布。如果p-value小于我们指定的显着性水平,则我们可以肯定的拒绝提出的假设,认为x肯定不服从正态分布,这个拒绝是绝对正确的。

衡量两个变量的相关性至少有以下三个方法:

皮尔森相关系数(Pearson correlation coefficient) 是反应俩变量之间线性相关程度的统计量,用它来分析正态分布的两个连续型变量之间的相关性。常用于分析自变量之间,以及自变量和因变量之间的相关性。

返回结果的第一个值为相关系数表示线性相关程度,其取值范围在[-1,1],绝对值越接近1,说明两个变量的相关性越强,绝对值越接近0说明两个变量的相关性越差。当两个变量完全不相关时相关系数为0。第二个值为p-value,统计学上,一般当p-value<0.05时,可以认为两变量存在相关性。

斯皮尔曼等级相关系数(Spearman’s correlation coefficient for ranked data ) ,它主要用于评价顺序变量间的线性相关关系,在计算过程中,只考虑变量值的顺序(rank, 秩或称等级),而不考虑变量值的大小。常用于计算类型变量的相关性。

返回结果的第一个值为相关系数表示线性相关程度,本例中correlation趋近于1表示正相关。第二个值为p-value,p-value越小,表示相关程度越显着。

kendall :

也可以直接对整体数据进行相关性分析,一般来说,相关系数取值和相关强度的关系是:0.8-1.0 极强 0.6-0.8 强 0.4-0.6 中等 0.2-0.4 弱 0.0-0.2 极弱。

❷ 如何利用python进行数据分析

作者Wes McKinney是pandas库的主要作者,所以本书也可以作为利用Python实现数据密集型应用的科学计算实践指南。本书适合刚刚接触Python的分析人员以及刚刚接触科学计算的Python程序员
•将IPython这个交互式Shell作为你的首要开发环境。
•学习NumPy(Numerical Python)的基础和高级知识。
•从pandas库的数据分析工具开始。
•利用高性能工具对数据进行加载、清理、转换、合并以及重塑。
•利用matplotlib创建散点图以及静态或交互式的可视化结果。
•利用pandas的groupby功能对数据集进行切片、切块和汇总操作。
•处理各种各样的时间序列数据。
•通过详细的案例学习如何解决Web分析、社会科学、金融学以及经•济学等领域的问题。

❸ python数据分析干什么

随着大数据时代的来临和Python编程语言的火爆,Python数据分析早已成为现在职场人的必备核心技能。
1、检查数据表
Python中使用shape函数来查看数据表的维度,也就是行数和列数。
2、数据表清洗
Python中处理空值的方法比较灵活,可以使用Dropna函数用来删除数据表中包含空值的数据,也可以使用fillna函数对空值进行填充。
3、数据预处理
数据预处理是对清洗完的数据进行整理以便后期的统计和分析工作,主要包括数据表的合并、排序、数值分列、数据分组及标记等工作。
4、数据提取
主要是使用三个函数:loc、iloc和ix,其中loc函数按标签值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。
5、数据筛选汇总
Python中使用loc函数配合筛选条件来完成筛选功能,配合sum和 count函数还能实现excel中sumif和countif函数的功能。
希望可以帮到你

❹ python可以做数据分析,好处是什么呢怎么学习

链接:https://pan..com/s/1FJZAznKSbwv-X52AM7uSfg

提取码:7234

炼数成金:Python数据分析。Python是一种面向对象、直译式计算机程序设计语言。也是一种功能强大而完善的通用型语言,已经具有十多年的发展历史,成熟且稳定。Python 具有脚本语言中最丰富和强大的类库,足以支持绝大多数日常应用。 Python语法简捷而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,它能够很轻松的把用其他语言制作的各种模块(尤其是C/C++)轻松地联结在一起。

课程将从Python的基本使用方法开始,一步步讲解,从ETL到各种数据分析方法的使用,并结合实例,让学员能从中借鉴学习。

课程目录:

Python基础

Python的概览——Python的基本介绍、安装与基本语法、变量类型与运算符

了解Python流程控制——条件、循环语句与其他语句

常用函数——函数的定义与使用方法、主要内置函数的介绍

.....

❺ python数据分析模块:numpy、pandas全解


一维数组情况:

二维数组情况:

3参数情况:

2参数情况:

1参数情况:

一维情况:

二维情况:

一维情况:

二维情况:

一维情况:

二维情况:第三个参数指定维度

只查看行数、或者列数

逗号隔开两个索引

某些行

某些列

可以看出append()函数在二维数组中添加元素,结果转为了一维数组。

那怎么保持二维数组呢?可以设置axis参数按行或者按列添加

可以看出先把二维数组降成了一维数组,再在索引为1的位置添加元素。

那么怎么保持在二维添加元素呢? 同样设置axis参数

也分按行和按列删除

标记缺失值: isnan()函数

补充缺失值:

同样axis参数可以指定拼接按行还是按列

2. hstack()函数:以水平堆叠的方式拼接数组

3. vstack()函数:以垂直堆叠的方式拼接数组

第二个参数还可以是数组,指定拆分的位置

hsplit()函数:横向拆成几个数组

vsplit()函数:纵向拆成几个数组

数组与数组之间的运算

数组与数值的运算

可以指定整个数组求和,还是按行或者按列

axis=0:每一列的元素求和

axis=1:每一行的元素求和

axis=0:每一列求均值

axis=1:每一行求均值

axis=0:每一列求最大值

axis=1:每一行求最大值

pandas有两个重要的数据结构对象:Series和DataFrame。

Series是创建一个一维数组对象,会自动生成行标签。

会自动生成行列标签

也可以用字典形式生成数据

在用字典生成数据的基础上,同时指定行标签

例如对下表的数据进行读取

4月是第四个表,我们应把sheet_name参数指定为3;因为索引是从0开始的。

可以看出read_excel()函数自动创建了一个DataFrame对象,同时自动把第一行数据当做列标签。

可以看出不给出header参数时,该参数默认为0。

header=1时结果如下:

header=None时结果如下:

index_col=0时,第0列为列标签

index_col=0时

usecols=[2]:指定第二列

指定多列

数据如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-j1SHxY8y-1637655972909)(C: ypora-user-imagesimage-20211114192949607.png)]

nrows=3时

head()函数中参数为空默认前5行

指定head(3)时如下

numpy模块也是shape

查看特定列的书库类型

特定列数据类型转换

先查看一下所有数据

与单行相比,结果显示的格式不一样了

iloc()挑选:

或者给出区间

挑选数据要么标签,要么索引挑选

或者

或者写成区间

标签挑选

或者索引挑选

先查看一下数据

或者用字典一对一修改

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-a6QKIoie-1637655972912)(C: ypora-user-imagesimage-20211123110431201.png)]

isin()函数查看表中是否有该值

查看特定列是否有该值

可以看出上述代码并没有替换,那怎么替换呢?

末尾插入一列

指定插入到哪列

axis参数可以指定删除行还是删除列

指定标签删除

指定索引删除

方法三

指定行标签删除

指定索引删除

方法三:

先查看所有数据

info()函数查看数据类型,还可以查看是否有缺失值

isnull()函数查看是否有缺失值

在numpy模块中用isnan()函数

删除有缺失值的行

删除整行都为缺失值的行: 需要指定how参数

不同列的缺失值设置不同的填充值

默认保留第一个重复值所在的行,删除其他重复值所在的行

保留第一个重复值所在的行

保留最后一个重复值所在的行

是重复的就删除

降序如下

参数指定first时,表示在数据有重复值时,越先出现的数据排名越靠前

获取产品为单肩包的行数据

获取数量>60的行数据

获取产品为单肩包 且 数量>60 的行数据

获取产品为单肩包 或 数量>60 的行数据

stack()函数转换成树形结构

how参数指定外连接

on参数指定按哪一列合并

concat()函数采用 全连接 的方式,没有的数设置为缺失值

重置行标签

效果与concat()一样

末尾添加行元素

指定列求和

指定列求均值

指定列求最值

获取单列的

corr()函数获取相关系数

获取指定列与其他列的相关系数

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-46g9qgQw-1637655972913)(C: ypora-user-imagesimage-20211123135643804.png)]

groupby()函数返回的是一个DataFrameBy对象,该对象包含分组后的数据,但是不能直观地显示出来。

分组后获取指定列的汇总情况

获取多列的汇总情况

获取多列的情况

ta = pd.read_excel(‘相关性分析.xlsx’)

print(data)

corr()函数获取相关系数

获取指定列与其他列的相关系数

[外链图片转存中…(img-46g9qgQw-1637655972913)]

groupby()函数返回的是一个DataFrameBy对象,该对象包含分组后的数据,但是不能直观地显示出来。

分组后获取指定列的汇总情况

获取多列的汇总情况

获取多列的情况






❻ Python数据分析师主要做什么Python基础

伴随着大数据时代的到来,Python的热度居高不下,已成为职场人士必备的技能,它不仅可以从事网络爬虫、人工智能、Web开发、游戏开发等工作,还是数据分析的首选语言。那么问题来了,利用Python数据分析可以做什么呢?简单来讲,可以做的事情有很多,具体如下。

第一、检查数据表

Python中使用shape函数来查看数据表的维度,也就是行数和列数。你可以使用info函数查看数据表的整体信息,使用dtypes函数来返回数据格式。Lsnull是Python中检查空置的函数,你可以对整个数据进行检查,也可以单独对某一列进行空置检查,返回的结果是逻辑值,包括空置返回True,不包含则返回False。使用unique函数查看唯一值,使用Values函数用来查看数据表中的数值。

第二,数据表清洗

Python中处理空值的方法比较灵活,可以使用Dropna函数用来删除数据表中包括空值的数据,也可以使用fillna函数对空值进行填充。Python中dtype是查看数据格式的函数,与之对应的是asstype函数,用来更改数据格式,Rename是更改名称的函数,drop_plicate函数函数重复值,replace函数实现数据转换。

第三,数据预处理

数据预处理是对清洗完的数据进行整理以便后期统计和分析工作,主要包括数据表的合并、排序、数值分列、数据分组以及标记等工作。在Python中可以使用merge函数对两个数据表进行合并,合并的方式为inner,此外还有left、right和outer方式。使用ort_values函数和sort_index函数完成排序,使用where函数完成数据分组,使用split函数实现分列。

第四,数据提取

主要是使用三个函数:loc、iloc和ix,其中loc函数按标准值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。除了按标签和位置提取数据意外,还可以按照具体的条件进行提取。

第五,数据筛选汇总

Python中使用loc函数配合筛选条件来完成筛选功能,配合sum和count函数还能实现Excel中sumif和countif函数的功能。Python中使用的主要函数是groupby和pivot_table。

❼ python数据分析可以做什么工作

现在互联网发展迅速,众多行业巨头,都已经转投到人工智能领域,而人工智能的首选编程语言就是python,所以学好Python能够从事的工作还是很多的,而且前景非常不错。

学完python可以应用于以下领域:

①Web 和 Internet开发

②科学计算和统计

③人工智能

④桌面界面开发

⑤软件开发

⑥后端开发

⑦网络爬虫

可以从事的岗位也很多,比如Python爬虫工程师,大数据工程师等等!

互联网行业目前还是最热门的行业之一,学习IT技能之后足够优秀是有机会进入腾讯、阿里、网易等互联网大厂高薪就业的,发展前景非常好,普通人也可以学习。

想要系统学习,你可以考察对比一下开设有相关专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,能够在校期间取得大专或本科学历,中博软件学院、南京课工场、南京北大青鸟等开设相关专业的学校都是不错的,建议实地考察对比一下。

祝你学有所成,望采纳。

❽ python大数据挖掘系列之基础知识入门 知识整理(入门教程含源码

Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们。

Python数据分析与挖掘技术概述

所谓数据分析,即对已知的数据进行分析,然后提取出一些有价值的信息,比如统计平均数,标准差等信息,数据分析的数据量可能不会太大,而数据挖掘,是指对大量的数据进行分析与挖倔,得到一些未知的,有价值的信息等,比如从网站的用户和用户行为中挖掘出用户的潜在需求信息,从而对网站进行改善等。
数据分析与数据挖掘密不可分,数据挖掘是对数据分析的提升。数据挖掘技术可以帮助我们更好的发现事物之间的规律。所以我们可以利用数据挖掘技术可以帮助我们更好的发现事物之间的规律。比如发掘用户潜在需求,实现信息的个性化推送,发现疾病与病状甚至病与药物之间的规律等。

预先善其事必先利其器

我们首先聊聊数据分析的模块有哪些:

下面就说说这些模块的基础使用。

numpy模块安装与使用

安装:
下载地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/
我这里下载的包是1.11.3版本,地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl
下载好后,使用pip install "numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl"
安装的numpy版本一定要是带mkl版本的,这样能够更好支持numpy

numpy简单使用

生成随机数

主要使用numpy下的random方法。

pandas

使用 pip install pandas 即可

直接上代码:
下面看看pandas输出的结果, 这一行的数字第几列,第一列的数字是行数,定位一个通过第一行,第几列来定位:

常用方法如下:

下面看看pandas对数据的统计,下面就说说每一行的信息

转置功能:把行数转换为列数,把列数转换为行数,如下所示:

通过pandas导入数据

pandas支持多种输入格式,我这里就简单罗列日常生活最常用的几种,对于更多的输入方式可以查看源码后者官网。

CSV文件

csv文件导入后显示输出的话,是按照csv文件默认的行输出的,有多少列就输出多少列,比如我有五列数据,那么它就在prinit输出结果的时候,就显示五列

excel表格

依赖于xlrd模块,请安装它。
老样子,原滋原味的输出显示excel本来的结果,只不过在每一行的开头加上了一个行数

读取SQL

依赖于PyMySQL,所以需要安装它。pandas把sql作为输入的时候,需要制定两个参数,第一个是sql语句,第二个是sql连接实例。

读取HTML

依赖于lxml模块,请安装它。
对于HTTPS的网页,依赖于BeautifulSoup4,html5lib模块。
读取HTML只会读取HTML里的表格,也就是只读取

显示的是时候是通过python的列表展示,同时添加了行与列的标识

读取txt文件

输出显示的时候同时添加了行与列的标识

scipy

安装方法是先下载whl格式文件,然后通过pip install “包名” 安装。whl包下载地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/scipy-0.18.1-cp35-cp35m-win_amd64.whl

matplotlib 数据可视化分析

我们安装这个模块直接使用pip install即可。不需要提前下载whl后通过 pip install安装。

下面请看代码:

下面说说修改图的样式

关于图形类型,有下面几种:

关于颜色,有下面几种:

关于形状,有下面几种:

我们还可以对图稍作修改,添加一些样式,下面修改圆点图为红色的点,代码如下:

我们还可以画虚线图,代码如下所示:

还可以给图添加上标题,x,y轴的标签,代码如下所示

直方图

利用直方图能够很好的显示每一段的数据。下面使用随机数做一个直方图。

Y轴为出现的次数,X轴为这个数的值(或者是范围)

还可以指定直方图类型通过histtype参数:

图形区别语言无法描述很详细,大家可以自信尝试。

举个例子:

子图功能

什么是子图功能呢?子图就是在一个大的画板里面能够显示多张小图,每个一小图为大画板的子图。
我们知道生成一个图是使用plot功能,子图就是subplog。代码操作如下:

我们现在可以通过一堆数据来绘图,根据图能够很容易的发现异常。下面我们就通过一个csv文件来实践下,这个csv文件是某个网站的文章阅读数与评论数。


先说说这个csv的文件结构,第一列是序号,第二列是每篇文章的URL,第三列每篇文章的阅读数,第四列是每篇评论数。


我们的需求就是把评论数作为Y轴,阅读数作为X轴,所以我们需要获取第三列和第四列的数据。我们知道获取数据的方法是通过pandas的values方法来获取某一行的值,在对这一行的值做切片处理,获取下标为3(阅读数)和4(评论数)的值,但是,这里只是一行的值,我们需要是这个csv文件下的所有评论数和阅读数,那怎么办?聪明的你会说,我自定义2个列表,我遍历下这个csv文件,把阅读数和评论数分别添加到对应的列表里,这不就行了嘛。呵呵,其实有一个更快捷的方法,那么就是使用T转置方法,这样再通过values方法,就能直接获取这一评论数和阅读数了,此时在交给你matplotlib里的pylab方法来作图,那么就OK了。了解思路后,那么就写吧。

下面看看代码:

❾ python数据分析是干什么的

数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。

数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。

Python数据分析可以做的事情有很多,具体如下:

第一、检查数据表

Python中使用shape函数来查看数据表的维度,也就是行数和列数。你可以使用info函数查看数据表的整体信息,使用dtypes函数来返回数据格式。Lsnull是Python中检查空置的函数,你可以对整个数据进行检查,也可以单独对某一列进行空置检查,返回的结果是逻辑值,包括空置返回True,不包含则返回False。使用unique函数查看唯一值,使用Values函数用来查看数据表中的数值。

第二,数据表清洗

Python中处理空值的方法比较灵活,可以使用Dropna函数用来删除数据表中包括空值的数据,也可以使用fillna函数对空值进行填充。Python中dtype是查看数据格式的函数,与之对应的是asstype函数,用来更改数据格式,Rename是更改名称的函数,drop_plicate函数函数重复值,replace函数实现数据转换。

第三,数据预处理

数据预处理是对清洗完的数据进行整理以便后期统计和分析工作,主要包括数据表的合并、排序、数值分列、数据分组以及标记等工作。在Python中可以使用merge函数对两个数据表进行合并,合并的方式为inner,此外还有left、right和outer方式。使用ort_values函数和sort_index函数完成排序,使用where函数完成数据分组,使用split函数实现分列。

第四,数据提取

主要是使用三个函数:loc、iloc和ix,其中loc函数按标准值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。除了按标签和位置提取数据意外,还可以按照具体的条件进行提取。

第五,数据筛选汇总

Python中使用loc函数配合筛选条件来完成筛选功能,配合sum和count函数还能实现Excel中sumif和countif函数的功能。Python中使用的主要函数是groupby和pivot_table。

❿ python做数据分析主要干哪些事情

第一、检查数据表
Python中使用shape函数来查看数据表的维度,也就是行数以及列数。你可以使用info函数来查看数据表的整体信息,使用dtype函数来返回数据格式;lsnull是Python中检验空值的函数,可以对整个数据表进行检查,也可以单独对某一行进行空值检查,返回的结构是逻辑值,包含空值返回true,不包含则返回false。
第二、数据清洗
Python可以进行数据清洗,Python中处理空值的方法比较灵活,可以使用Dropna函数用来删除数据表中包含空值的数据,也可以使用fillna函数对空值进行填充;Python中dtype是查看数据格式的函数,与之对应的是astype函数,用来更改数据格式,Rename是更改列名称的函数,drop_plicates函数删除重复值,replace函数实现数据替换。
第三、数据提取
进行数据提取时,主要使用三个函数:loc、iloc以及ix。Loc函数按标签进行提取,iloc按位置进行提取,ix可以同时按照标签和位置进行提取。除了按标签和位置提取数据之外,还可以按照具体的条件进行提取,比如使用loc和isin两个函数配合使用。
第四、数据筛选
Python数据分析还可以进行数据筛选,Python中使用loc函数配合筛选条件来完成筛选功能,配合sum和count函数还能实现Excel中sumif和countif函数的功能。使用的主要函数是groupby和pivot_table;groupby是进行分类汇总的函数,使用方法比较简单,groupby按列名称出现的顺序进行分组。

阅读全文

与python数据分析及标签相关的资料

热点内容
找漫画看应该下载什么app 浏览:180
如何在vps上搭建自己的代理服务器 浏览:744
nginxphp端口 浏览:403
内脏pdf 浏览:152
怎么看云服务器架构 浏览:85
我的世界国际服为什么登不进服务器 浏览:996
微盟程序员老婆 浏览:930
intellij创建java 浏览:110
java连接odbc 浏览:38
启动修复无法修复电脑命令提示符 浏览:359
手机编程是什么 浏览:98
山东移动程序员 浏览:163
苏州java程序员培训学校 浏览:479
单片机液晶驱动 浏览:855
魔拆app里能拆到什么 浏览:132
新预算法的立法理念 浏览:144
wdcpphp的路径 浏览:135
单片机p0口电阻 浏览:926
浏览器中调短信文件夹 浏览:594
五菱宏光空调压缩机 浏览:70