❶ 如何学习网络编程
具体到编程,用java来实现网络编程是很容易的,可以作为网络编程的入门。使用C++和winsock相对复杂一些。
总之看实际需要了。
你好初学网络编程者可以从以下几个步骤开展:
1)下载一个可以互动的学习工具,通过这个与这个工具互动,我们可以及时的学到每个api的结果如果。
对于有c/c++或java基础的朋友通过一两个礼拜的时间就可以上手了,另外个人建议初学者可以学习dive into python。
2)掌握网络编程中会用到的几个基本概念和内涵,比如IP地址,port号,socket等
3)记住和消化网络编程C/S模型,把server和client端编程的常用模式理解和消化
4)花几天时间学习socket api集,api集可以分为下面几大类:创建 socket bind listen accept收发 read/recv/recvfrom write/send/sendto关闭 close shutdown参数 getsockopt/setsockopt地址 gethostbyaddr getaddrbyhost,...在学习这些api时候,可以先关注在函数功能,参数意义上
5)结合python互动平台,实践socket api的用法,比如socket函数怎么使用,bind怎么使用等等。在互动过程中,我们可以变换参数,看看调用结果如何。比如,创建一个tcp socket的语法如下:socket(AF_INET,SOCK_STREAM)创建一个udp socket的语法如下:socket(AF_INET,SOCK_DGRAM)
6)学习socket server端编程实现简单规约比如echo,time等,然后通过cmd中的telnet来测试。
7)学习I/O模型,比如阻塞、非阻塞和反应式(select,poll,WaitForMultipleObject)等
8)学习Richard Stevens的《Unix网络编程》,深入学习其中的api原理以及服务端设计原理,并通过代码编写。
9)下载高性能网络编程框架twisted,笔者强烈推荐,它将使你的网络编程效率提高10倍以上。
10)学习设计模式、操作系统知识比如线程、进程、同步等。
要想真正掌握计算机技术,并在IT行业里干出一番事业来,有所作为,具有一定的编程能力是一个基本条件和要求。打好基础学编程要具备一定的基础,总结之有以下几方面:
(1)数学基础 从计算机发展和应用的历史来看计算机的数学模型和体系结构等都是有数学家提出的,最早的计算机也是为数值计算而设计的。因此,要学好计算机就要有一定的数学基础,出学者有高中水平就差不多了。
(2)逻辑思维能力的培养 学程序设计要有一定的逻辑思维能力,“逻思力”的培养要长时间的实践锻炼。要想成为一名优秀的程序员,最重要的是掌握编程思想。要做到这一点必须在反复的实践、观察、分析、比较、总结中逐渐地积累。因此在学习编程过程中,我们不必等到什么都完全明白了才去动手实践,只要明白了大概,就要敢于自己动手去体验。谁都有第一次。
有些问题只有通过实践后才能明白,也只有实践才能把老师和书上的知识变成自己的,高手都是这样成材的。
❷ 有哪些用 Python 语言讲算法和数据结构的书
1.Python数据结构篇
数据结构篇主要是阅读[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [该网址链接可能会比较慢]时写下的阅读记录,当然,也结合了部分[算法导论](Introction to Algorithms)中的内容,此外还有不少wikipedia上的内容,所以内容比较多,可能有点杂乱。这部分主要是介绍了如何使用Python实现常用的一些数据结构,例如堆栈、队列、二叉树等等,也有Python内置的数据结构性能的分析,同时还包括了搜索和排序(在算法设计篇中会有更加详细的介绍)的简单总结。每篇文章都有实现代码,内容比较多,简单算法一般是大致介绍下思想及算法流程,复杂的算法会给出各种图示和代码实现详细介绍。
**这一部分是下面算法设计篇的前篇,如果数据结构还不错的可以直接看算法设计篇,遇到问题可以回来看数据结构篇中的某个具体内容充电一下,我个人认为直接读算法设计篇比较好,因为大家时间也都比较宝贵,如果你会来读这些文章说明你肯定有一定基础了,后面的算法设计篇中更多的是思想,这里更多的是代码而已,嘿嘿。**
(1)[搜索](Python Data Structures)
简述顺序查找和二分查找,详述Hash查找(hash函数的设计以及如何避免冲突)
(2)[排序](Python Data Structures)
简述各种排序算法的思想以及它的图示和实现
(3)[数据结构](Python Data Structures)
简述Python内置数据结构的性能分析和实现常用的数据结构:栈、队列和二叉堆
(4)[树总结](Python Data Structures)
简述二叉树,详述二叉搜索树和AVL树的思想和实现
2.Python算法设计篇
算法设计篇主要是阅读[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**点击链接可进入Springer免费下载原书电子版**]之后写下的读书总结,原书大部分内容结合了经典书籍[算法导论](Introction to Algorithms),内容更加细致深入,主要是介绍了各种常用的算法设计思想,以及如何使用Python高效巧妙地实现这些算法,这里有别于前面的数据结构篇,部分算法例如排序就不会详细介绍它的实现细节,而是侧重于它内在的算法思想。这部分使用了一些与数据结构有关的第三方模块,因为这篇的重点是算法的思想以及实现,所以并没有去重新实现每个数据结构,但是在介绍算法的同时会分析Python内置数据结构以及第三方数据结构模块的优缺点,也就意味着该篇比前面都要难不少,但是我想我的介绍应该还算简单明了,因为我用的都是比较朴实的语言,并没有像算法导论一样列出一堆性质和定理,主要是对着某个问题一步步思考然后算法就出来了,嘿嘿,除此之外,里面还有很多关于python开发的内容,精彩真的不容错过!
这里每篇文章都有实现代码,但是代码我一般都不会分析,更多地是分析算法思想,所以内容都比较多,即便如此也没有包括原书对应章节的所有内容,因为内容实在太丰富了,所以我只是选择经典的算法实例来介绍算法核心思想,除此之外,还有不少内容是原书没有的,部分是来自算法导论,部分是来自我自己的感悟,嘻嘻。该篇对于大神们来说是小菜,请一笑而过,对于菜鸟们来说可能有点难啃,所以最适合的是和我水平差不多的,对各个算法都有所了解但是理解还不算深刻的半桶水的程序猿,嘿嘿。
本篇的顺序按照原书[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章节来安排的(章节标题部分相同部分不同哟),为了节省时间以及保持原着的原滋原味,部分内容(一般是比较难以翻译和理解的内容)直接摘自原着英文内容。
**1.你也许觉得很多内容你都知道嘛,没有看的必要,其实如果是我的话我也会这么想,但是如果只是归纳一个算法有哪些步骤,那这个总结也就没有意义了,我觉得这个总结的亮点在于想办法说清楚一个算法是怎么想出来的,有哪些需要注意的,如何进行优化的等等,采用问答式的方式让读者和我一起来想出某个问题的解,每篇文章之后都还有一两道小题练手哟**
**2.你也许还会说算法导论不是既权威又全面么,基本上每个算法都还有详细的证明呢,读算法导论岂不更好些,当然,你如果想读算法导论的话我不拦着你,读完了感觉自己整个人都不好了别怪小弟没有提醒你哟,嘻嘻嘻,左一个性质右一个定理实在不适合算法科普的啦,没有多少人能够坚持读完的。但是码农与蛇的故事内容不多哟,呵呵呵**
**3.如果你细读本系列的话我保证你会有不少收获的,需要看算法导论哪个部分的地方我会给出提示的,嘿嘿。温馨提示,前面三节内容都是介绍基础知识,所以精彩内容从第4节开始哟,么么哒 O(∩_∩)O~**
(1)[Python Algorithms - C1 Introction](Python Algorithms)
本节主要是对原书中的内容做些简单介绍,说明算法的重要性以及各章节的内容概要。
(2)[Python Algorithms - C2 The basics](Python Algorithms)
**本节主要介绍了三个内容:算法渐近运行时间的表示方法、六条算法性能评估的经验以及Python中树和图的实现方式。**
(3)[Python Algorithms - C3 Counting 101](Python Algorithms)
原书主要介绍了一些基础数学,例如排列组合以及递归循环等,但是本节只重点介绍计算算法的运行时间的三种方法
(4)[Python Algorithms - C4 Inction and Recursion and Rection](Python Algorithms)
**本节主要介绍算法设计的三个核心知识:Inction(推导)、Recursion(递归)和Rection(规约),这是原书的重点和难点部分**
(5)[Python Algorithms - C5 Traversal](Python Algorithms)
**本节主要介绍图的遍历算法BFS和DFS,以及对拓扑排序的另一种解法和寻找图的(强)连通分量的算法**
(6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms)
**本节主要介绍分治法策略,提到了树形问题的平衡性以及基于分治策略的排序算法**
(7)[Python Algorithms - C7 Greedy](Python Algorithms)
**本节主要通过几个例子来介绍贪心策略,主要包括背包问题、哈夫曼编码和最小生成树等等**
(8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms)
**本节主要结合一些经典的动规问题介绍动态规划的备忘录法和迭代法这两种实现方式,并对这两种方式进行对比**
(9)[Python Algorithms - C9 Graphs](Python Algorithms)
❸ python中的数据结构分析
1.Python数据结构篇
数据结构篇主要是阅读[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [该网址链接可能会比较慢]时写下的阅读记录,当然,也结合了部分[算法导论](Introction to Algorithms)
中的内容,此外还有不少wikipedia上的内容,所以内容比较多,可能有点杂乱。这部分主要是介绍了如何使用Python实现常用的一些数据结构,例
如堆栈、队列、二叉树等等,也有Python内置的数据结构性能的分析,同时还包括了搜索和排序(在算法设计篇中会有更加详细的介绍)的简单总结。每篇文
章都有实现代码,内容比较多,简单算法一般是大致介绍下思想及算法流程,复杂的算法会给出各种图示和代码实现详细介绍。
**这一部分是下
面算法设计篇的前篇,如果数据结构还不错的可以直接看算法设计篇,遇到问题可以回来看数据结构篇中的某个具体内容充电一下,我个人认为直接读算法设计篇比
较好,因为大家时间也都比较宝贵,如果你会来读这些文章说明你肯定有一定基础了,后面的算法设计篇中更多的是思想,这里更多的是代码而已,嘿嘿。**
(1)[搜索](Python Data Structures)
简述顺序查找和二分查找,详述Hash查找(hash函数的设计以及如何避免冲突)
(2)[排序](Python Data Structures)
简述各种排序算法的思想以及它的图示和实现
(3)[数据结构](Python Data Structures)
简述Python内置数据结构的性能分析和实现常用的数据结构:栈、队列和二叉堆
(4)[树总结](Python Data Structures)
简述二叉树,详述二叉搜索树和AVL树的思想和实现
2.Python算法设计篇
算法设计篇主要是阅读[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**点击链接可进入Springer免费下载原书电子版**]之后写下的读书总结,原书大部分内容结合了经典书籍[算法导论](Introction to Algorithms),
内容更加细致深入,主要是介绍了各种常用的算法设计思想,以及如何使用Python高效巧妙地实现这些算法,这里有别于前面的数据结构篇,部分算法例如排
序就不会详细介绍它的实现细节,而是侧重于它内在的算法思想。这部分使用了一些与数据结构有关的第三方模块,因为这篇的重点是算法的思想以及实现,所以并
没有去重新实现每个数据结构,但是在介绍算法的同时会分析Python内置数据结构以及第三方数据结构模块的优缺点,也就意味着该篇比前面都要难不少,但
是我想我的介绍应该还算简单明了,因为我用的都是比较朴实的语言,并没有像算法导论一样列出一堆性质和定理,主要是对着某个问题一步步思考然后算法就出来
了,嘿嘿,除此之外,里面还有很多关于python开发的内容,精彩真的不容错过!
这里每篇文章都有实现代码,但是代码我一般都不会分
析,更多地是分析算法思想,所以内容都比较多,即便如此也没有包括原书对应章节的所有内容,因为内容实在太丰富了,所以我只是选择经典的算法实例来介绍算
法核心思想,除此之外,还有不少内容是原书没有的,部分是来自算法导论,部分是来自我自己的感悟,嘻嘻。该篇对于大神们来说是小菜,请一笑而过,对于菜鸟
们来说可能有点难啃,所以最适合的是和我水平差不多的,对各个算法都有所了解但是理解还不算深刻的半桶水的程序猿,嘿嘿。
本篇的顺序按照原书[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章节来安排的(章节标题部分相同部分不同哟),为了节省时间以及保持原着的原滋原味,部分内容(一般是比较难以翻译和理解的内容)直接摘自原着英文内容。
**1.
你也许觉得很多内容你都知道嘛,没有看的必要,其实如果是我的话我也会这么想,但是如果只是归纳一个算法有哪些步骤,那这个总结也就没有意义了,我觉得这
个总结的亮点在于想办法说清楚一个算法是怎么想出来的,有哪些需要注意的,如何进行优化的等等,采用问答式的方式让读者和我一起来想出某个问题的解,每篇
文章之后都还有一两道小题练手哟**
**2.你也许还会说算法导论不是既权威又全面么,基本上每个算法都还有详细的证明呢,读算法导论岂
不更好些,当然,你如果想读算法导论的话我不拦着你,读完了感觉自己整个人都不好了别怪小弟没有提醒你哟,嘻嘻嘻,左一个性质右一个定理实在不适合算法科
普的啦,没有多少人能够坚持读完的。但是码农与蛇的故事内容不多哟,呵呵呵**
**3.如果你细读本系列的话我保证你会有不少收获的,需要看算法导论哪个部分的地方我会给出提示的,嘿嘿。温馨提示,前面三节内容都是介绍基础知识,所以精彩内容从第4节开始哟,么么哒 O(∩_∩)O~**
(1)[Python Algorithms - C1 Introction](Python Algorithms)
本节主要是对原书中的内容做些简单介绍,说明算法的重要性以及各章节的内容概要。
(2)[Python Algorithms - C2 The basics](Python Algorithms)
**本节主要介绍了三个内容:算法渐近运行时间的表示方法、六条算法性能评估的经验以及Python中树和图的实现方式。**
(3)[Python Algorithms - C3 Counting 101](Python Algorithms)
原书主要介绍了一些基础数学,例如排列组合以及递归循环等,但是本节只重点介绍计算算法的运行时间的三种方法
(4)[Python Algorithms - C4 Inction and Recursion and Rection](Python Algorithms)
**本节主要介绍算法设计的三个核心知识:Inction(推导)、Recursion(递归)和Rection(规约),这是原书的重点和难点部分**
(5)[Python Algorithms - C5 Traversal](Python Algorithms)
**本节主要介绍图的遍历算法BFS和DFS,以及对拓扑排序的另一种解法和寻找图的(强)连通分量的算法**
(6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms)
**本节主要介绍分治法策略,提到了树形问题的平衡性以及基于分治策略的排序算法**
(7)[Python Algorithms - C7 Greedy](Python Algorithms)
**本节主要通过几个例子来介绍贪心策略,主要包括背包问题、哈夫曼编码和最小生成树等等**
(8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms)
**本节主要结合一些经典的动规问题介绍动态规划的备忘录法和迭代法这两种实现方式,并对这两种方式进行对比**
(9)[Python Algorithms - C9 Graphs](Python Algorithms)
**本节主要介绍图算法中的各种最短路径算法,从不同的角度揭示它们的内核以及它们的异同**
❹ 青少年学习编程有那些课程
青少年编程课程有哪些?童程童美青少年编程课程从Scratch图形化编程制作动画和游戏,到Python编写爬虫,开发网站,到教算法,让孩子参加全国信息学奥林匹克竞赛,这样的课程设置有助于提高孩子的计算机水平,培养学生的软件开发能力.同时,童程童美还开设了智能机器人编程课程,从WeDo到EV3,提升孩子的硬件操作和动手实践能力.
中国青少年编程教育品牌童程童美,美国上市公司出品,6000多名员工,年产值超10亿元,近20年编程教学经验,专注3-18岁青少年编程教育及服务,打造适合中国孩子的专业的青少年编程课程.
经过编程训练的孩子,可能会养成下面这些的思维习惯。
自动化思维
近几年很火的人工智能,本质上就是一种自动化。为了让自己在繁琐而重复的任务中解脱出来,有编程思维的小朋友会进行更高层思考和设计,利用工具和脚本让自己解脱出来,犹如工厂的流水线设计。
抽象思维
抽象就是去掉与计算无关的部分,用规约的方法还原到问题的本质。所谓本质即把初始问题转换为一个或几个可以使用计算机描述并解决的问题,进一步讲也就是转换为在算法上可计算的一个或几个问题。它的本质是利用计算机的能力。
系统思维
系统思维就是选择、改善或构建“框架”,以更、更全面、更深入地系统思考和表达的思维方式,可以理解为系统就是框架与逻辑的综合体。它能够帮助你更有效地理解一个较复杂的系统。
由于编程的核心是算法,有些家长就认为数学不好的孩子,学编程/计算机科学会很吃力,这其实也是一个误区。
不可否认,数学和计算机科学是相互影响的,计算机中的计算原理处处都包含着数学思想,同样计算机的高速运算能力也大大地推动了数学的发展。
编程实际上是求解某个问题的过程。这个过程也可看做是设计算法到实现算法的过程,因此可以看出编程离不开数学原理的支持,没有良好的数学思维就很难编写出高质量的程序。
但是,会基本的加减乘除四则运算,就可以应对比较基础的编程学习。高等数学,只有在机器学习,数据压缩等中才用得上。VIPCODE编程的课程设计也会充分考虑孩子们的数学能力和思维水平。
同时,编程能够帮助孩子理解数学抽象概念。对于许多孩子来说,数学概念太抽象、离生活太远,不好理解。但是在编程的过程中,抽象的数学概念可以被转化为看得见的、具体的图像。
比如,在编程的过程中,孩子对于小数和分数会有更直观的理解。将代码中的小数点移动位置,屏幕上的物体的大小就会发生巨大的变化。孩子可以因此可以将抽象的小数和分数的概念变成鲜活的图形,印到脑子里。
另一方面,编程就是把实际问题转换成计算机能够理解的数学问题,对数学能力也是一种强化。
抛开学习的深度来讲难易,其实没有价值。从入门的角度来说,学编程并不比数学难。可为什么很多家长还是觉得编程很难,担心孩子学不会呢?
这其中的本质原因在于家长没学过,对于自己不熟悉不了解的东西,人们倾向于放大它的难度。
我们教孩子学编程,和教他们学数学一样,都是期望孩子掌握一个更有效的工具,目标不是成为伟大的程序员或数学家。
计算机科学进化到今天,较难的底层编程已经比较完善了,孩子们直接调用前人的算法成果即可,就像你要学习使用excel,学习的是每个功能怎么用,并不需要知道每个功能是怎么做出来的。从这一点上来说,二者没有区别。
总结下,数学和编程都能锻炼思维,区别是前者对脑力的要求更高。如果数学不好,那就建议孩子先试试编程课,没准儿能重新找回自信呢!数学棒棒的孩子,也不妨尝试下编程,计算机科学也有高峰等着你去攀登呢!
❺ 如何用python把一个很大的数归约到0-1之间
您好,使用sigmoid函数就行,表达式为sigmoid(x)=1/(1+exp(x))
❻ 大数据工程师需要学哪些技术
一、大数据采集
大数据采集,即对各种来源的结构化和非结构化海量数据,所进行的采集。
数据库采集:流行的有Sqoop和ETL,传统的关系型数据库MySQL和Oracle 也依然充当着许多企业的数据存储方式。当然了,目前对于开源的Kettle和Talend本身,也集成了大数据集成内容,可实现hdfs,hbase和主流Nosq数据库之间的数据同步和集成。
网络数据采集:一种借助网络爬虫或网站公开API,从网页获取非结构化或半结构化数据,并将其统一结构化为本地数据的数据采集方式。
文件采集:包括实时文件采集和处理技术flume、基于ELK的日志采集和增量采集等等。
二、大数据预处理
大数据预处理,指的是在进行数据分析之前,先对采集到的原始数据所进行的诸如“清洗、填补、平滑、合并、规格化、一致性检验”等一系列操作,旨在提高数据质量,为后期分析工作奠定基础。数据预处理主要包括四个部分:数据清理、数据集成、数据转换、数据规约。
三、大数据储存
大数据每年都在激增庞大的信息量,加上已有的历史数据信息,对整个业界的数据存储、处理带来了很大的机遇与挑战.为了满足快速增长的存储需求,云存储需要具备高扩展性、高可靠性、高可用性、低成本、自动容错和去中心化等特点.常见的云存储形式可以分为分布式文件系统和分布式数据库。其中,分布式文件系统采用大规模的分布式存储节点来满足存储大量文件的需求,而分布式的NoSQL数据库则为大规模非结构化数据的处理和分析提供支持。
四、大数据清洗
MapRece作为Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Rece(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。随着业务数据量的增多,需要进行训练和清洗的数据会变得越来越复杂,这个时候就需要任务调度系统,比如oozie或者azkaban,对关键任务进行调度和监控。
关于大数据工程师需要学哪些技术,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
❼ 学web前端开发还是java还是c和c++
Java发展前景比较好,web前端开发比较适合新手,容易入门。C语言更适合游戏开发。千锋教育有线上免费Java线上公开课。
❽ 女孩子可以学习网络编程吗
可以,喜欢什么就学。至少学了才不会后悔当初为啥没选择。喜欢什么就去努力,像有女生喜欢打球,她们今年在奥运会上奉献了她们的力量,为国争优,值得骄傲。勇敢做自己喜欢的事情 ,学会了一样的发光发热,无论是在生活中,工作中还是哪里,付出就有回报。还有中国女生学飞机,她现在努力奋斗成了机长,也很厉害。她就是王峥。喜欢就去学,加油^0^~的也是女孩子,在这学起编程来,一点都不输给同龄的男孩子,所以不要认为学习编程是男孩子的专利呀。
其实编程主要是对孩子思维的培养,让孩子养成主动学习、主动思考、主动创造的好习惯。因为很多女孩子的逻辑思维能力也很强,也很喜欢思考,所以女孩子完全可以学习网络编程,编程有一个更好的优点,就是没有太多的勾心斗角。编程的就业前景非常不错的,所以不管是男孩还是女孩学好编程都很重要,相信不久的将来编程就和现在的办公软件一样是每个上班的人都要具备的技能。女孩子学起来也很快的,主要是现在的编程技术越来越普及了。女孩子当然可以学习网络编程,网络编程能够让你的思维变得更加紧密,逻辑更加清晰,也能够让你养成一个良好的学习,思考的习惯
❾ python培训需要多久
人工智能市场的火热导致python开发工程师岗位薪资水涨船高,且在各行各业的大中小型企业中都很抢手,就业方向非常广。既可进军当前正流行的人工智能行业,也可研究大数据做数据分析人才。那python培训需要学多久?今天我们一起来探讨一下这个问题。
python凭借其突出的语言优势与特性,已经融入到各行各业的每个领域。一般来说,python培训需要脱产学习5个月左右,这样的时长才能够让学员既掌握工作所需的技能,还能够积累一定的项目经验。当然如果你想要在人工智能的路上越走越远,则需要不断的积累和学习。
python培训的5个月时间里,有相当大一部分时间是在实战做项目,第一阶段是为期一个月学习python的核心编程,主要是python的语言基础和高级应用,帮助学员获得初步软件工程知识并树立模块化编程思想。学完这一阶段的内容,学员已经能够胜任python初级开发工程师的职位。
第二个阶段也是为期一个月,主要学习python全栈开发基础,通过本模块的学习,学生不仅能够掌握js在网络前端中的使用,还能够把js作为一门通用语言来运用,为学生将来从事全栈工作打下坚实的基础。
第三个阶段是全栈开发项目实战,整个阶段需要1.5个月的时间学习,是整个培训时间占比比较长的一个阶段,时间更长、案例更多、
实用性更强,在这个阶段主要是做项目,学案例,学完这个阶段,学员就可胜任python全栈开发工程师的职位。
第四个阶段的学习是网络爬虫,学习三周,主要是掌握数据的爬取,学完这个阶段可选择的职位有网络爬虫工程师或者是数据采集工程师,第五阶段的学习是数据分析+人工智能,主要是掌握机器学习算法的匹配方法,深入理解算法原理与实现步骤,学习三周,这个阶段结束学员可选择的岗位就更多了,数据分析师、算法工程师、人工智能工程师等都可以直接胜任。
最后一周的学习时间是就业指导,主要是清晰了解职业发展规划,明确自身定位,找到适合自身发展的工作,同时提高自己的面试能力,获得更好的工作机会。
python培训5个月,只要你好好学习,找到一份满意的工作不是难题,优就业的python全栈+人工智能课程,以企业需求为导向,引入企业较热门技术,项目实战模拟实际企业开发流程,让你更加了解真实的企业项目开发,避免你在学习的路上多走弯路