导航:首页 > 编程语言 > python核心加速

python核心加速

发布时间:2022-11-05 03:04:30

python机器学习库怎么使用

1. Scikit-learn(重点推荐)
www .github .com/scikit-learn/scikit-learn
Scikit-learn 是基于Scipy为机器学习建造的的一个Python模块,他的特色就是多样化的分类,回归和聚类的算法包括支持向量机,逻辑回归,朴素贝叶斯分类器,随机森林,Gradient Boosting,聚类算法和DBSCAN。而且也设计出了Python numerical和scientific libraries Numpy and Scipy2、Keras(深度学习)
https://github.com/fchollet/keras
Keras是基于Theano的一个深度学习框架,它的设计参考了Torch,用Python语言编写,是一个高度模块化的神经网络库,支持GPU和CPU。
3、Lasagne(深度学习)
不只是一个美味的意大利菜,也是一个和Keras有着相似功能的深度学习库,但其在设计上与它们有些不同。
4.Pylearn2
www .github .com/lisa-lab/pylearn2
Pylearn是一个让机器学习研究简单化的基于Theano的库程序。它把深度学习和人工智能研究许多常用的模型以及训练算法封装成一个单一的实验包,如随机梯度下降。
5.NuPIC
www .github .com/numenta/nupic
NuPIC是一个以HTM学习算法为工具的机器智能平台。HTM是皮层的精确计算方法。HTM的核心是基于时间的持续学习算法和储存和撤销的时空模式。NuPIC适合于各种各样的问题,尤其是检测异常和预测的流数据来源。
6. Nilearn
www .github .com/nilearn/nilearn
Nilearn 是一个能够快速统计学习神经影像数据的Python模块。它利用Python语言中的scikit-learn 工具箱和一些进行预测建模,分类,解码,连通性分析的应用程序来进行多元的统计。
7.PyBrain
www .github .com/pybrain/pybrain
Pybrain是基于Python语言强化学习,人工智能,神经网络库的简称。 它的目标是提供灵活、容易使用并且强大的机器学习算法和进行各种各样的预定义的环境中测试来比较你的算法。
8.Pattern
www .github .com/clips/pattern
Pattern 是Python语言下的一个网络挖掘模块。它为数据挖掘,自然语言处理,网络分析和机器学习提供工具。它支持向量空间模型、聚类、支持向量机和感知机并且用KNN分类法进行分类。
9.Fuel
www .github .com/mila-udem/fuel
Fuel为你的机器学习模型提供数据。他有一个共享如MNIST, CIFAR-10 (图片数据集), Google's One Billion Words (文字)这类数据集的接口。你使用他来通过很多种的方式来替代自己的数据。
10.Bob
www .github .com/idiap/bob
Bob是一个免费的信号处理和机器学习的工具。它的工具箱是用Python和C++语言共同编写的,它的设计目的是变得更加高效并且减少开发时间,它是由处理图像工具,音频和视频处理、机器学习和模式识别的大量软件包构成的。
11.Skdata
www .github .com/jaberg/skdata
Skdata是机器学习和统计的数据集的库程序。这个模块对于玩具问题,流行的计算机视觉和自然语言的数据集提供标准的Python语言的使用。
12.MILK
www .github .com/luispedro/milk
MILK是Python语言下的机器学习工具包。它主要是在很多可得到的分类比如SVMS,K-NN,随机森林,决策树中使用监督分类法。 它还执行特征选择。 这些分类器在许多方面相结合,可以形成不同的例如无监督学习、密切关系金传播和由MILK支持的K-means聚类等分类系统。
13.IEPY
www .github .com/machinalis/iepy
IEPY是一个专注于关系抽取的开源性信息抽取工具。它主要针对的是需要对大型数据集进行信息提取的用户和想要尝试新的算法的科学家。
14.Quepy
www .github .com/machinalis/quepy
Quepy是通过改变自然语言问题从而在数据库查询语言中进行查询的一个Python框架。他可以简单的被定义为在自然语言和数据库查询中不同类型的问题。所以,你不用编码就可以建立你自己的一个用自然语言进入你的数据库的系统。
现在Quepy提供对于Sparql和MQL查询语言的支持。并且计划将它延伸到其他的数据库查询语言。
15.Hebel
www .github .com/hannes-brt/hebel
Hebel是在Python语言中对于神经网络的深度学习的一个库程序,它使用的是通过PyCUDA来进行GPU和CUDA的加速。它是最重要的神经网络模型的类型的工具而且能提供一些不同的活动函数的激活功能,例如动力,涅斯捷罗夫动力,信号丢失和停止法。
16.mlxtend
www .github .com/rasbt/mlxtend
它是一个由有用的工具和日常数据科学任务的扩展组成的一个库程序。
17.nolearn
www .github .com/dnouri/nolearn
这个程序包容纳了大量能对你完成机器学习任务有帮助的实用程序模块。其中大量的模块和scikit-learn一起工作,其它的通常更有用。
18.Ramp
www .github .com/kvh/ramp
Ramp是一个在Python语言下制定机器学习中加快原型设计的解决方案的库程序。他是一个轻型的pandas-based机器学习中可插入的框架,它现存的Python语言下的机器学习和统计工具(比如scikit-learn,rpy2等)Ramp提供了一个简单的声明性语法探索功能从而能够快速有效地实施算法和转换。
19.Feature Forge
www .github .com/machinalis/featureforge
这一系列工具通过与scikit-learn兼容的API,来创建和测试机器学习功能。
这个库程序提供了一组工具,它会让你在许多机器学习程序使用中很受用。当你使用scikit-learn这个工具时,你会感觉到受到了很大的帮助。(虽然这只能在你有不同的算法时起作用。)20.REP
www .github .com/yandex/rep
REP是以一种和谐、可再生的方式为指挥数据移动驱动所提供的一种环境。
它有一个统一的分类器包装来提供各种各样的操作,例如TMVA, Sklearn, XGBoost, uBoost等等。并且它可以在一个群体以平行的方式训练分类器。同时它也提供了一个交互式的情节。
21.Python 学习机器样品
www .github .com/awslabs/machine-learning-samples用亚马逊的机器学习建造的简单软件收集。
22.Python-ELM
www .github .com/dclambert/Python-ELM
这是一个在Python语言下基于scikit-learn的极端学习机器的实现。
23.gensim
主题模型python实现
Scalable statistical semantics
Analyze plain-text documents for semantic structureRetrieve semantically similar documents

Ⅱ Python之父:Python 4.0可能不会来了

机器之心报道

2020 年 1 月 1 日,Python 官方结束了对 Python 2 的维护,意味着 Python 2 完全退休,进入 Python 3 时代。之后,关于 Python 4 的发布排期也成为了社区的热门议题。

去年,Python 之父 Van Rossum 在推特上表示,假如会有 Python 4,从 3 到 4 的版本过渡会更像从 1 到 2 的过渡,而不会像从 2 到 3 的过渡。

但在最近接受 Microsoft Reactor 采访时,Van Rossum 被问及 Python 的未来,以及什么时候会出 Python 4.0。 他却表示,可能不会有 Python 4 了。

Van Rossum 回答说:“我和 Python 核心开发团队的成员对 Python 4.0 没什么想法,提不起兴趣,估计至少会一直编号到 3.33。”

视频地址:https://www.youtube.com/watch?v=aYbNh3NS7jA

在从 Python 2 过渡到 Python 3 时已经被上了一课的 Van Rossum 表示,在内部的严肃场合,谈论 Python 4 是个禁忌,大家只会在饮茶时把 Python 4 当玩笑开。

2020 年 4 月,Python 2.7 生命周期中的最后一个版本 - Python 2.7.18 发布了。彼时 Van Rossum 警告过开发人员 Python 3 与 Python 2 不兼容,因此基于 Python 2 的软件库依赖项将不能升级至版本 3.0。

那是一个延续了数年之久,缓慢而又痛苦的迁移期。Van Rossum 说:“实际上,Python 比核心开发人员意识到的要成功得多,因此我们应该对从 Python 2 过渡到 Python3 更加了解和支持。但当时我们错误地认为过渡会很简单,因为我们都像 Python 编程中的爱因斯坦一样,可以在睡眠中将代码从 Python 2 转换为 Python3。”

不过,Van Rossum 并没有完全排除 Python 4.0 的可能性,他暗示道,当 Python 与 C 的兼容性发生重大变化时,可能会改变目前的想法。Van Rossum 表示:“如果不更改语言就会与 C 扩展存在严重的不兼容,或者我们能够摆脱全局解释器锁(GIL),这样的情况下我们可能被迫升级至 Python4.0。”

然而,关于预计在 10 月发布的 Python 3.10,以及将实现一些重大速度提升的版本 3.11,Van Rossum 强调,重点依旧是尽可能长时间地渐进式的更新编程语言。

两年前,Guido van Rossum 从 Dropbox 离职,宣布退休,但又在 2020 年 11 月加入了微软,主动结束了自己的退休生活。当时他表示,将致力于“使用户更好地使用 Python(并且不仅仅是在 Windows 系统上)”。

“现在,我们有一个严格的年度发布时间表,Python 3.10 之后是 3.11,之后是 3.12,依此类推。(在 Python 4 之前)我们必须先发布 3.9,每次添加另一个数字并不是容易的事,但仍然比从 3 到 4 轻松得多。”

“Python 的加速是渐进式的,3.11 版本会有新的速度提升,我们会在 3.12 和 3.13 中将其进一步提高。”

接下来,让 Python 更快是 Python 核心开发团队的工作重点。在近日的 PyCon Language Summit 上,Van Rossum 宣布目标是在 3.11 版本中将 CPython 的性能提高一倍。

Van Rossum 还介绍了通过外部项目(比如 Pyston)来加速语言的努力,Pyston 项目是 Python 3.8.8 的实现,该实现最初发布在 Dropbox,后来开源。其创建者最近发布了 Pyston 2.2,相比 CPython 3.8.8 的性能提高了 30%。

“现在,我觉得大约有一年时间来证明我们在 Python 性能上取得了进步,3.11 会比 3.10 快得多。”

同时,Van Rossum 也分享了自己对其他编程语言的看法,他欣赏 Rust 改进 C++ 代码的能力,并且 Go 是“比较 Python”的语言中最有趣的。

“你可能注意到,在过去的六七年里,我们一直在 Python 中添加可选的静态类型,也叫渐进类型。”Python 之父也介绍了 Python 近年来对 TypeScript 的重视程度。

“当开始项目时,我实际上并不了解 TypeScript,所以我不能说最初是受到了 TypeScript 的启发…… 如今,我们肯定是以 TypeScript 为样板,有时我们发布了新功能,因为某些功能相对 Typescript 是缺失的,然后我们根据用户需求将其进行添加,非常成功。”

Van Rossum 说,Python 仍然在努力寻找重获成功的方法。在他看来,Hejlsberg 是一个非常聪明的人,TypeScript 正在做的一些事情,是 Python 未来需要弄清楚的。实际上 TypeScript 也在向 Python 学习,就像 javaScript 在一些领域从 Python 那里学习一样。

参考链接:https://www.tectalk.co/why-python-4-0-might-never-arrive-according-to-its-creator/

Ⅲ 现在学习python看什么书比较好

人工智能时代的来临让Python崭露头角,语法简洁、功能强大的特性更是吸引了很多人学习Python。由于某些条件的限制,有部分人选择自学Python,而需要什么书籍资料成为困扰她们的一大难题。Python初学者看什么书?
1、《Python编程:入门到实践》
书中内容分为基础篇和实战篇两部分。基础篇介绍基本的编程概念,实战篇介绍如何利用新学到的知识开发功能丰富的项目:2D游戏《外星人入侵》,数据可视化实战,Web应用程序。

推荐理由:这本书,书中涵盖的内容是比较精简的,没有艰深晦涩的概念,最重要的是每个小结都附带有”动手试一试”环节。理论和实践恰到好处,行文逻辑流畅,不跳跃,手把手教的感觉,却绝不啰嗦,非常适合入门。

2、《Python基础教程》
这本书内容涉及的范围较广,既能为初学者夯实基础,又能帮助程序员提升技能,适合各个层次的Python开发人员阅读参考。最后几章的10各项目更是这本书最大的亮点,不仅实用而且讲解到位。

推荐理由:做为一门语言教程书籍,这本书讲得非常不错!该说的说得清楚,不该说的轻轻点到,读者想要网上查找的时候也有迹可循,轻重把握很好。作者会将不同的理解方式和实现方式放在一个例子中,更多的时候作者会有颇为有趣的幽默来让读者感到轻松愉快。

3、《笨方法学Python》
这是一本Python入门书籍,适合对计算机了解不多,没有学过编程,但对编程感兴趣的读者学习使用。这本书以习题的方式引导读者一步一步学习编程,从简单的打印一直讲到完整项目的实现,让初学者从基础的编程技术入手,最终体验到软件开发的基本过程。

推荐理由:编程入门的必备书,从一个个的小例子入手,不仅是教你写Python代码,还有编程的技巧。

4、《Python编程快速上手》
本书的首部分介绍了基本Python编程概念,第二部分介绍了一些不同的任务,通过编写Python程序,可以让计算机自动完成它们。同时,每章的末尾还提供了一些习题和深入的实践项目,帮助读者巩固所学的知识。

推荐理由:本书尤其适合缺乏编程基础的初学者,语法使用Python 3,书中不仅介绍了Python语言的基础知识,而且还通过项目实践教会读者如何应用这些知识和技能。有其它编程语言经验的同学,也可以直接看着本书快速了解Python可以做什么,语法问题可以边做东西边查!

5、《Python核心编程》
书中内容总共分为3部分。

第1部分为讲解了Python的一些通用应用,包括正则表达式、网络编程、Internet客户端编程、多线程编程、GUI编程、数据库编程等。第2部分讲解了与Web开发相关的主题,包括Web客户端和服务器、CGI和WSGI相关的Web编程、Django Web框架等。第3部分则为一个补充/实验章节,包括文本处理以及一些其他内容。

推荐理由:它仔细、深入地剖析了一些重要的Python主题,而且读者无需大量的相关经验也能看懂。与所有其他Python入门类图书不同的是,它不会用隐晦、难以理解的文字来折磨读者,而是始终立足于帮助读者牢固掌握Python的语法和结构。

想要快速入门Python开发,仅靠看书怎么够,毕竟编程最重要的就是练习。

Ⅳ python为什么是人工智能首选

1、人生苦短,我用Python:简单、高效、易入门
在讨论为什么选择Python之前我们首先得知道Python是个什么东西。Python是一种面向对象、解释型计算机程序设计语言。它的设计初衷就是优雅、明确、简单。比起同样是面向对象的Java语言,函数、模块、字符串、数字对于Python来说全都是对象,而不像Java中还有基本类型一说。
有些小伙伴可能要问了,Python作为脚本语言,运行速度没有Java和c++快,为什么还要选择Python。
人工智能的核心计算全是C语言写好的底层,Python只是写逻辑。不是说C语言写不了上层逻辑,只是代码量太大,开发效率低。运行速度可以通过硬件升级来提升,但是开发速度却不能通过堆人手来提升。对于目前人工智能的应用来说,快速开发比快速执行更有效。
2、Python具有丰富而强大的库,昵称胶水语言
上面我们提到人工智能真正的计算是依靠于C语言来完成的。要想编写人工智能的逻辑,就需要一个从其他语言到C语言的借口,Python是门槛最低最容易的。而且Python在历史上也一直充当着科学计算和数据分析的重要工具的角色,有numpy这样的基础库既减少了开发的工作量,也方便从业人员上手。
3、python应用领域广泛,上天支持航天航空系统开发,下至小游戏开发,几乎无所不能。
Python是通用语言,什么地方都可以用,不过最佳应用场景是那些追求开发速度而不太在乎运行效率的地方。
Python现在最大的应用是web后台,然后还有linux系统管理,各种平台下快速原型开发,小工具编写,或者作为粘合语言来调度其他语言写的东西。
这里我们简单举几个例子。
①web应用开发
服务器端编程,具有丰富的Web开发框架,如Django和TurboGears,快速完成一个网站的开发和Web服务。典型如国内的豆瓣、果壳网等;国外的Google、Dropbox等。
②系统网络运维
在运维的工作中,有大量重复性工作的地方,并需要做管理系统、监控系统、发布系统等,将工作自动化起来,提高工作效率,这样的场景Python是一门非常合适的语言。
③3D游戏开发
Python有很好的3D渲染库和游戏开发框架,有很多使用Python开发的游戏,如迪斯尼卡通城、黑暗之刃。常用PyGame、Pykyra等,对于想要进军游戏行业的同学们,Python也是一个不错的选择。
4、2018IEEE Spectrum编程语言排行榜,Python彻底甩掉java,位居48种编程语言之首
Python不但雄踞第一,在综合指数、用户增速、就业优势和开源语言单项中,全都霸占榜首。开发人工智能的人不一定都是非常专业的程序员,很多学术界和从事数据分析的人并不熟悉编程。如果说要选择一门语言来入门编程,Python绝对是首选。
精简了很多不必要的符号,便于阅读理解,尽可能的接近自然语言,编程简单直接,适合初学编程者。即使是非计算机专业的0基础小白也可以分分钟入门。这就是为什么Python可以被这么多人选择和喜爱的理由。
5、Python作为大中小教育编程语言首先入门语言,可谓上可直通人工智能,下则对接初高中编程入门
Python作为一门编程语言,今年以来热度和影响力持续上升,已经上升到了国家战略的层面上。山东省在最新出版的小学信息技术六年级教材中加入了Python的内容;编程界也一直有传言浙江省将对中学信息技术教材进行改动,VB已死,Python当立。
国家相关教育部门对于“人工智能普及”格外重视,不仅将Python列入到小学、中学和高中等传统教育体系中,并借此为未来国家和社会发展奠定了人工智能的人才培养基础,逐步由底层向高层推动“全民学Python”,从而进一步实现人工智能技术的推动和社会人才结构的更迭。

Ⅳ python主要是做什么

1. Web开发
最火的Python
web框架Django,支持异步高并发的Tornado框架,短小精悍的flask,bottle,Django官方的标语把Django定义为the
framework for perfectionist with deadlines(大意是一个为完全主义者开发的高效率web框架)
2. 网络编程
支持高并发的Twisted网络框架,py3引入的asyncio使异步编程变的非常简单
3. 爬虫开发
爬虫领域,Python几乎是霸主地位,Scrapy/Request/BeautifuSoap/urllib等,想爬啥就爬啥
4. 云计算开发
目前最火最知名的云计算框架就是OpenStack,Python现在的火,很大一部分就是因为云计算市场近几年的爆发
5. 人工智能
MASA和Google早期大量使用Python,为什么Python积累了丰富的科学运算库,当AI时代来临后,Python从众多编程语言中脱颖而出,各种人工智能算法都基于Python编写,由其PyTorch之后,Python作为AI时代头牌语言的位置基本确立!
6. 自动化运维
问问中国的每个运维人员,运维人员必须会的语言是什么?10个人详细会给你一个相同的答案,它的名字叫Python
7. 金融分析
金融公司使用的很多分析程序、高频交易软件就是用的Python,目前,Python是金融分析、量化交易领域里用的最多的语言
8. 科学运算
97年开始,NASA就在大量使用Python在进行各种复杂的科学运算,随着NumPy,SciPy,Matplotlib,Enthought
librarys等众多程序库的开发,使得Python越来越适合做科学计算、绘制高质量的2D和3D图像。和科学计算领域最流行的商业软件Matlab相比,Python是一门通用的程序设计语言,比Matlab所采用的脚本语言的应用范围更广泛
9. 游戏开发
在网络游戏开发中Python也有很多应用。相比Lua or
C++,Python比Lua有更高阶的抽象能力,可以用更少的代码描述游戏业务逻辑,与Lua相比,Python更适合作为一种Host语言,即程序的入口点是在Python那一端会比较好,然后用C/C++在非常必要的时候写一些扩展。Python非常适合编写1万行以上的项目,而且能够很好的把网游项目的规模控制在10万行代码以内。
10. 桌面软件
虽然大家很少使用桌面软件了,但是Python在图形界面开发上也很强大,你可以用tkinter/PyQT框架开发各种桌面软件!

Ⅵ python如何进行内存管理

Python的内存管理主要有三种机制:引用计数机制,垃圾回收机制和内存池机制。
引用计数机制
简介
python内部使用引用计数,来保持追踪内存中的对象,Python内部记录了对象有多少个引用,即引用计数,当对象被创建时就创建了一个引用计数,当对象不再需要时,这个对象的引用计数为0时,它被垃圾回收。
特性
1.当给一个对象分配一个新名称或者将一个对象放入一个容器(列表、元组或字典)时,该对象的引用计数都会增加。
2.当使用del对对象显示销毁或者引用超出作用于或者被重新赋值时,该对象的引用计数就会减少。
3.可以使用sys.getrefcount()函数来获取对象的当前引用计数。多数情况下,引用计数要比我们猜测的大的多。对于不可变数据(数字和字符串),解释器会在程序的不同部分共享内存,以便节约内存。
垃圾回收机制
特性
1.当内存中有不再使用的部分时,垃圾收集器就会把他们清理掉。它会去检查那些引用计数为0的对象,然后清除其在内存的空间。当然除了引用计数为0的会被清除,还有一种情况也会被垃圾收集器清掉:当两个对象相互引用时,他们本身其他的引用已经为0了。
2.垃圾回收机制还有一个循环垃圾回收器, 确保释放循环引用对象(a引用b, b引用a, 导致其引用计数永远不为0)。
内存池机制
简介
在Python中,许多时候申请的内存都是小块的内存,这些小块内存在申请后,很快又会被释放,由于这些内存的申请并不是为了创建对象,所以并没有对象一级的内存池机制。这就意味着Python在运行期间会大量地执行malloc和free的操作,频繁地在用户态和核心态之间进行切换,这将严重影响Python的执行效率。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。
内存池概念
内存池的概念就是预先在内存中申请一定数量的,大小相等的内存块留作备用,当有新的内存需求时,就先从内存池中分配内存给这个需求,不够了之后再申请新的内存。这样做最显着的优势就是能够减少内存碎片,提升效率。内存池的实现方式有很多,性能和适用范围也不一样。
特性
1.Python提供了对内存的垃圾收集机制,但是它将不用的内存放到内存池而不是返回给操作系统。
2.Pymalloc机制。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。
3.Python中所有小于256个字节的对象都使用pymalloc实现的分配器,而大的对象则使用系统的 malloc。
4.对于Python对象,如整数,浮点数和List,都有其独立的私有内存池,对象间不共享他们的内存池。也就是说如果你分配又释放了大量的整数,用于缓存这些整数的内存就不能再分配给浮点数。

Ⅶ 学Python有前途么

毋庸置疑,Python前景很广阔。首先,对应岗位多。Python被称为编程语言中的万能胶水,这是一门应用面很广的语言,被广泛的用在Web开发、运维自动化、测试自动化、数据挖掘等多个行业和领域。【更系统全面的学习资料,点击查看】

无论是国内的网络、字节跳动、阿里巴巴、腾讯、华为还是国外的谷歌、NASA、YouTube、Facebook、工业光魔、红帽等都在用Python完成各种各样的任务。其次,市场需求大。从最新Python招聘岗位需求来看,Python工程师的岗位需求量巨大,并且岗位需求量还在呈现上涨的趋势。全国Python岗位需求量接近10W个。最后,薪资水平。目前初级Python工程师薪资待遇就达10-15K,而随着开发年限的增加,Python开发者薪资呈直线上升的变化趋势,工作8年的Python薪资攀升至25K左右。此外,国家也在加大培养Python人才。国务院发布《新一代人工智能发展规划》,人工智能正式纳入国家发展战略,并且已经有数个省份将Python纳入到高考体系,国家计算机二级考试新增 “ Python 语言程序设计”科目。总的来说,Python是很有前途的,符合时代发展的大方向,感兴趣的小伙伴,可以放心大胆的去尝试。关于Python培训的更多相关知识,建议到千锋教育进行更详细的了解,目前,千锋教育已在北京、深圳、上海、广州、郑州、大连等20余个核心城市建立直营校区,等待你的随听。【千锋IT培训机构,热门IT课程试听名额限时领取】

Ⅷ Python引入了一个机制:引用计数。

python内部使用引用计数,来保持追踪内存中的对象,
Python内部记录了对象有多少个引用
,即引用计数,当对象被创建时就创建了一个引用计数,当对象不再需要时,这个对象的引用计数为0时,它被垃圾回收。
总结一下对象会在一下情况下引用计数加1:
1.对象被创建:x=4
2.另外的别人被创建:y=x
3.被作为参数传递给函数:foo(x)
4.作为容器对象的一个元素:a=[1,x,'33']
引用计数减少情况
1.一个本地引用离开了它的作用域。比如上面的foo(x)函数结束时,x指向的对象引用减1。
2.对象的别名被显式的销毁:del x ;或者del y
3.对象的一个别名被赋值给其他对象:x=789
4.对象从一个窗口对象中移除:myList.remove(x)
5.窗口对象本身被销毁:del myList,或者窗口对象本身离开了作用域。垃圾回收
1、当内存中有不再使用的部分时,垃圾收集器就会把他们清理掉。
它会去检查那些引用计数为0的对象
,然后清除其在内存的空间。当然除了引用计数为0的会被清除,还有一种情况也会被垃圾收集器清掉:当两个对象相互引用时,他们本身其他的引用已经为0了。
2、垃圾回收机制还有一个
循环垃圾回收器
, 确保释放循环引用对象(a引用b, b引用a, 导致其引用计数永远不为0)。
在Python中,许多时候申请的内存都是小块的内存,这些小块内存在申请后,很快又会被释放,由于这些内存的申请并不是为了创建对象,所以并没有对象一级的内存池机制。
这就意味着Python在运行期间会大量地执行malloc和free的操作,频繁地在用户态和核心态之间进行切换,这将严重影响Python的执行效率。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。
内存池机制
Python提供了对内存的垃圾收集机制,但是它将不用的内存放到内存池而不是返回给操作系统。
Python中所有小于256个字节的对象都使用pymalloc实现的分配器,而大的对象则使用系统的
malloc。另外Python对象,如整数,浮点数和List,都有其独立的私有内存池,对象间不共享他们的内存池。也就是说如果你分配又释放了大量的整数,用于缓存这些整数的内存就不能再分配给浮点数。
在Python中,许多时候申请的内存都是小块的内存,这些小块内存在申请后,很快又会被释放,由于这些内存的申请并不是为了创建对象,所以并没有对象一级的内存池机制。这就意味着Python在运行期间会大量地执行malloc和free的操作,频繁地在用户态和核心态之间进行切换,这将严重影响
Python的执行效率。这也就是之前提到的

Ⅸ Python 适合大数据量的处理吗

百万级别数据是小数据,python处理起来不成问题,但python处理数据还是有些问题的

Python处理大数据的劣势:

1、python线程有gil,通俗说就是多线程的时候只能在一个核上跑,浪费了多核服务器。在一种常见的场景下是要命的:并发单元之间有巨大的数据共享或者共用(例如大dict),多进程会导致内存吃紧,多线程则解决不了数据共享的问题,单独的写一个进程之间负责维护读写这个数据不仅效率不高而且麻烦

2、python执行效率不高,在处理大数据的时候,效率不高,这是真的,pypy(一个jit的python解释器,可以理解成脚本语言加速执行的东西)能够提高很大的速度,但是pypy不支持很多python经典的包,例如numpy(顺便给pypy做做广告,土豪可以捐赠一下PyPy - Call for donations)

3、绝大部分的大公司,用java处理大数据不管是环境也好,积累也好,都会好很多

Python处理数据的优势(不是处理大数据):

1、异常快捷的开发速度,代码量巨少

2、丰富的数据处理包,不管正则也好,html解析啦,xml解析啦,用起来非常方便

3、内部类型使用成本巨低,不需要额外怎么操作(java,c++用个map都很费劲)

4、公司中,很大量的数据处理工作工作是不需要面对非常大的数据的

5、巨大的数据不是语言所能解决的,需要处理数据的框架(hadoop, mpi。。。。)虽然小众,但是python还是有处理大数据的框架的,或者一些框架也支持python

6、编码问题处理起来太太太方便了

综上所述:

1、python可以处理大数据

2、python处理大数据不一定是最优的选择

3. python和其他语言(公司主推的方式)并行使用是非常不错的选择

4. 因为开发速度,你如果经常处理数据,而且喜欢linux终端,而且经常处理不大的数据(100m一下),最好还是学一下python

阅读全文

与python核心加速相关的资料

热点内容
电影打分python代码 浏览:350
androidjni获取签名 浏览:111
解压文件电脑上哪里找 浏览:447
linuxcutc 浏览:173
金穗蜀道通etc用什么app办理 浏览:123
阿云服务器系统盘与数据盘的区别 浏览:213
gcc编译器可以用于单片机吗 浏览:259
xmanagerlinux配置 浏览:664
文件夹视频没有声音怎么回事 浏览:83
闪闪app是什么软件 浏览:206
win7下引导linux 浏览:793
陕西bgp服务器云主机 浏览:934
ug编程有几种加工方式 浏览:447
锤子手机如何添加桌面文件夹 浏览:465
公司早会拍照用哪个app好 浏览:424
学习打卡声音解压视频 浏览:824
如何使用代理服务器加速上网 浏览:266
找企业负责人电话用什么app 浏览:427
linux创建文本文件命令 浏览:390
计算机中文档加密保护操作步骤 浏览:387