1. python matplotlib数据作图
一、使用numpy生成长度为100的等差序列作为自变量,命名为x,并使用三角函数SiNx和cosx**2生成两个因变量,命名为y和Z。
2. python这个怎么绘图
importmatplotlib.pyplotasplt
#plt.rcParams['font.sas-serig']=['SimHei']#用来正常显示中文标签
x=['第一产业','第二产业','第三产业',]
plt.ylabel('项目')
plt.xlabel(x,fontproperties="SimHei")#或者这样来显示中文
x_=['1','2','3']
y=[24171.0,23170,29636]
y1=[22790,23099,31364]
y2=[21919,22693,32839]
y3=[21496,22350,33757]
y4=[20944,21824,34872]
plt.xticks([])#隐藏坐标
plt.plot(x_,y,x_,y1,x_,y2,x_,y3,x_,y4)
plt.show()
底下的那个坐标我不知道具体多少,所以做了个大概的以供参考哦
3. python matplot 的xticks怎么用
y轴默认会有数值,你是需要自定义吗可以使用yticks函数,第一个参数是y轴的位置,第二个参数是具体标签importmatplotlib.pyplotaspltimportnumpyasnpx=np.arange(0,6)y=x*xplt.plot(x,y,marker='o')plt.yticks(y,['a','b','c','d','e','f'])
4. 利用python进行《野蛮时代》游戏数据分析
数据包含近229万条记录,109个字段,以下取较重要的字段进行说明。
字段说明:user_id:用户编码,用户唯一标识
bd_stronghold_level:要塞等级,相当于游戏账号等级
wood_rece_value:木头消耗数量
stone_rece_value:石头消耗数量
ivory_rece_value:象牙消耗数量
meat_rece_value:肉消耗数量
magic_rece_value:魔法消耗数量
general_acceleration_rece_value:通用加速消耗数量
building_acceleration_rece_value:建筑加速消耗数量
reaserch_acceleration_rece_value:科研加速消耗数量
training_acceleration_rece_value:训练加速消耗数量
treatment_acceleration_rece_value:治疗加速消耗数量
pvp_battle_count:玩家对玩家次数
pve_battle_count:玩家对机器次数
avg_online_minutes:日均在线时间
pay_price: 消费金额
pay_count:消费次数
分析思路:用户注册时间分布情况?
用户的付费情况(付费率,ARPU,ARPPU)?
各等级用户的付费情况?
用户的消费习惯?
可视化数据
分析过程:
①导入数据
import numpy as np
import pandas as pd
from pandas import read_csv
from sklearn.cluster import KMeans
import matplotlib.pyplotas plt
import pylab as pl
from matplotlib.font_managerimport FontManager, FontProperties
pd.set_option('display.max_columns',None)
#为了数据安全,一份数据
df=df0
#检查是否有空值
print(df.isnull().any().any())
#观察数据构成
print(df.head())
②清洗数据
#以user_id为维度,删除重复数据,并查看用户总数
df=df.drop_plicates(subset='user_id')
print('用户总数:',len(df['user_id']))
→用户总数:2288007
③计算用户注册时间分布
#首先将注册时间精确到天
register_date=[]
for i in df['register_time']:
date=i[5:10]
register_date.append(date)
df['register_time']=register_date
#计算每天的注册人数
df_register=df.groupby('register_time').size()
df_register.columns=['日期','注册人数']
print(df_register)
(可视化)
plt.plot(df_register)
plt.grid(True)
pl.xticks(rotation=90)
font=FontProperties(fname='/System/Library/Fonts/PingFang.ttc')
plt.title('用户注册分布图',fontproperties=font)
plt.show()
△可以看出,用户注册数在2月19日有一次的大的高峰,其他时间也分别有几次小高峰,且高峰的持续时间很短,可以推测是因为游戏推出一些奖励活动或公司对游戏的推广取得了效果进而使注册用户激增。
④用户的付费情况(付费率,ARPU,ARPPU)
#付费率(付费人数/活跃人数)
df_pay_user=df[(df['pay_price']>0)]
pay_rate=df_pay_user['user_id'].count()/df_active_user['user_id'].count()
print('付费率:%.2f'%(pay_rate))
#ARPU(总付费金额/活跃人数)
arpu=df_pay_user['pay_price'].sum()/df_active_user['user_id'].count()
print('ARPU:%.2f'%(arpu))
#ARPPU(总付费金额/付费人数)
arppu=df_pay_user['pay_price'].sum()/df_pay_user['user_id'].count()
print('ARPPU:%.2f'%(arppu))
△目前盈利较好的手游的ARPU超过5元,一般手游在3~5元之间,盈利较差的低于3元,该游戏的ARPU为8.55元,说明盈利水平较高。
⑤不同等级用户的付费情况
df_user=df[['user_id','bd_stronghold_level','pay_price','pay_count']]
df_table=pd.pivot_table(df_user,index=['bd_stronghold_level'],
values=['user_id','pay_price','pay_count'],
aggfunc={'user_id':'count','pay_price':'sum','pay_count':'sum'})
df_stronghold_pay=pd.DataFrame(df_table.to_records())
#各等级付费人数
df_stronghold_pay['pay_num']=df_user[(df_user['pay_price']>0)].groupby('bd_stronghold_level').user_id.count()
#各等级付费转化率
df_stronghold_pay['pay_rate']=df_stronghold_pay['pay_num']/df_stronghold_pay['user_id']
#各等级平均付费金额
df_stronghold_pay['avg_pay_price']=df_stronghold_pay['pay_price']/df_stronghold_pay['user_id']
#各等级平均付费次数
df_stronghold_pay['avg_pay_count']=df_stronghold_pay['pay_count']/df_stronghold_pay['user_id']
#重命名列名
df_stronghold_pay.columns=['要塞等级','总付费次数','总付费金额','总人数',
'付费人数','付费转化率','人均付费金额','人均付费次数']
df_stronghold_pay=df_stronghold_pay[['要塞等级','总人数','付费人数','付费转化率',
'总付费金额','人均付费金额','总付费次数','人均付费次数']]
df_stronghold_pay=df_stronghold_pay.round(2)
print(df_stronghold_pay)
(可视化)
#要塞等级—付费转化率
x=df_stronghold_pay['要塞等级']
y=df_stronghold_pay['付费转化率']
plt.xticks(x,range(0,len(x),1))
plt.plot(x,y)
plt.grid(True)
plt.title('不同等级用户付费转化率',fontproperties=font)
plt.show()
#要塞等级-人均付费金额
x=df_stronghold_pay['要塞等级']
y=df_stronghold_pay['人均付费金额']
plt.xticks(x,range(0,len(x),1))
plt.plot(x,y)
plt.grid(True)
plt.title('不同等级用户人均付费jine',fontproperties=font)
plt.show()
x=df_stronghold_pay['要塞等级']
y=df_stronghold_pay['人均付费金额']
plt.xticks(x,range(0,len(x),1))
plt.plot(x,y)
plt.grid(True)
plt.title('不同等级用户人均付费jine',fontproperties=font)
plt.show()
#要塞等级-人均付费次数
x=df_stronghold_pay['要塞等级']
y=df_stronghold_pay['人均付费次数']
plt.xticks(x,range(0,len(x),1))
plt.plot(x,y)
plt.grid(True)
plt.title('不同等级用户人均付费次数',fontproperties=font)
plt.show()
△用户等级到达10级时,付费率接近60%,等级到达13级时,付费率接近100%,且人均付费金额和次数两项指标也在用户达到10级后增长迅速,因此可以认定10级以上用户为游戏的核心用户。
△但是观察用户等级分布,发现绝大部分用户还是处在10级以下的水平,因此如何使用户达到10级是游戏运营接下来需要考虑的事。
⑥不同玩家的消费习惯
该游戏充值主要可以获得道具类(木头、石头、象牙、肉、魔法)和加速券类(通用、建筑、科研、训练、医疗)。根据用户的充值金额大小,分别分析两类消费品的消耗情况。
#将等级>=10级的玩家划分为:消费>=500为高消费玩家,<500为普通玩家
df_eli_user=df[(df['pay_price']>=500)&(df['bd_stronghold_level']>=10)]
df_nor_user=df[(df['pay_price']<500)&(df['bd_stronghold_level']>10)]
#不同玩家的道具消耗情况
wood_avg=[df_eli_user['wood_rece_value'].mean(),df_nor_user['wood_rece_value'].mean()]
stone_avg=[df_eli_user['stone_rece_value'].mean(),df_nor_user['stone_rece_value'].mean()]
ivory_avg=[df_eli_user['ivory_rece_value'].mean(),df_nor_user['ivory_rece_value'].mean()]
meat_avg=[df_eli_user['meat_rece_value'].mean(),df_nor_user['meat_rece_value'].mean()]
magic_avg=[df_eli_user['magic_rece_value'].mean(),df_nor_user['magic_rece_value'].mean()]
props_data={'high_value_player':[wood_avg[0],stone_avg[0],ivory_avg[0],meat_avg[0],magic_avg[0]],
'normal_player':[wood_avg[1],stone_avg[1],ivory_avg[1],meat_avg[1],magic_avg[1]]}
df_props=pd.DataFrame(props_data,index=['wood','stone','ivory','meat','magic'])
df_props=df_props.round(2)
print(df_props)
#可视化
ax=df_props.plot(kind='bar',title='Props Rece',
grid=True,legend=True)
plt.show()
△普通玩家和高消费玩家对木头、石头、肉的消耗都较大,魔法的消耗都较小,而在象牙的消耗上,高消费玩家和普通玩家的消耗差距较大。
#不同玩家的加速券消耗情况
general_avg=[df_eli_user['general_acceleration_rece_value'].mean(),
df_nor_user['general_acceleration_rece_value'].mean()]
building_avg=[df_eli_user['building_acceleration_rece_value'].mean(),
df_nor_user['building_acceleration_rece_value'].mean()]
research_avg=[df_eli_user['reaserch_acceleration_rece_value'].mean(),
df_nor_user['reaserch_acceleration_rece_value'].mean()]
training_avg=[df_eli_user['training_acceleration_rece_value'].mean(),
df_nor_user['training_acceleration_rece_value'].mean()]
treatment_avg=[df_eli_user['treatment_acceleration_rece_value'].mean(),
df_nor_user['treatment_acceleration_rece_value'].mean()]
acceleration_data={'high_value_player':[general_avg[0],building_avg[0],research_avg[0],
training_avg[0],treatment_avg[0]],
'normal_player':[general_avg[1],building_avg[1],research_avg[1],
training_avg[1],treatment_avg[1]]}
df_acceleration=pd.DataFrame(acceleration_data,index=['general','building','researching','training','treatment'])
print(df_acceleration.round(2))
#可视化
ax=df_acceleration.plot(kind='bar',title='Acceleration Rece',
grid=True,legend=True)
plt.show()
△两类玩家对对治疗加速券消耗都很小,对通用加速券的消耗差异较大,其他三种加速券消耗差别不大。
结论:1.该游戏具有较大的用户基数,且新用户注册受游戏活动、新版本等因素影响较大。
2.该游戏的ARPU为8.55,说明该游戏的盈利能力较高。
3.用户等级达到10级后,付费意愿明显上升,且达到13级时付费率将近100%。但是绝大多数用户仍然停留在10级以下,如何使用户平滑升至10级尤为重要。
4.消费习惯上,高消费玩家对象牙和通用加速券的需求远多于一般玩家。
5. python中plot怎么设置横纵坐标名称
用plot画二维图像时,默认情况下的横坐标和纵坐标显示的值有时达不到自己的需求,需要借助xticks()和yticks()分别对横坐标x-axis和纵坐标y-axis进行设置。
import numpy as np
import matplotlib.pyplot as plt
x = range(1,13,1)
y = range(1,13,1)
plt.plot(x,y)
plt.show()
此时的x轴和y轴都是只显示偶数,其它的奇数未显示,这样在展示实验效果或放入文章中都会影响其可读性。
为了设置坐标轴的值,增加其可读性,有多种方法。这里介绍的是matplotlib的函数xticks()和yticks()。
(5)pythonxticks函数扩展阅读
基本用法:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 生成x轴上的数据:从-3到3,总共有50个点
x = np.linspace(-1, 1, 50)
# 定义一个线性方程
y1 = 2 * x + 1
# 定义一个二次方程
y2 = x ** 2
# 设置x轴的取值范围为:-1到2
plt.xlim(-1, 2)
# 设置y轴的取值范围为:-1到3
plt.ylim(-1, 3)
# 设置x轴的文本,用于描述x轴代表的是什么
plt.xlabel("I am x")
# 设置y轴的文本,用于描述y轴代表的是什么
plt.ylabel("I am y")
plt.plot(x, y2)
# 绘制红色的线宽为1虚线的线条
plt.plot(x, y1, color='red', linewidth=1.0, linestyle='--')
# 显示图表
plt.show()
6. 如何用python取图片轮廓
1、查找轮廓(find_contours)
measure模块中的find_contours()函数,可用来检测二值图像的边缘轮廓。
函数原型为:
skimage.measure.find_contours(array,level)
array: 一个二值数组图像
level: 在图像中查找轮廓的级别值
返回轮廓列表集合,可用for循环取出每一条轮廓。
例1:
importnumpyasnp
importmatplotlib.pyplotasplt
fromskimageimportmeasure,draw
#生成二值测试图像
img=np.zeros([100,100])
img[20:40,60:80]=1#矩形
rr,cc=draw.circle(60,60,10)#小圆
rr1,cc1=draw.circle(20,30,15)#大圆
img[rr,cc]=1
img[rr1,cc1]=1
#检测所有图形的轮廓
contours=measure.find_contours(img,0.5)
#绘制轮廓
fig,(ax0,ax1)=plt.subplots(1,2,figsize=(8,8))
ax0.imshow(img,plt.cm.gray)
ax1.imshow(img,plt.cm.gray)
forn,contourinenumerate(contours):
ax1.plot(contour[:,1],contour[:,0],linewidth=2)
ax1.axis('image')
ax1.set_xticks([])
ax1.set_yticks([])
plt.show()
结果如下:不同的轮廓用不同的颜色显示
7. python 离x轴距离
python离x轴距离为0。bottom决定了柱子距离x轴的高度默认为None,即表示与x轴距离为0,我们在调用xlim的时候只是限制了x轴的结果并没有限制y轴,所以画出来y轴的范围还是之前数据的范围。
python离x轴的画图方法
xlim能够设置的基本上只有坐标轴的范围,而xticks和yticks既可以设置范围也可以设置每个刻度之间的间距,我们x轴的范围是负10到10,在默认的图像当中系统帮我们选择的间距是2点5,即每隔2点5画一个坐标点一共画8个,我们直接在xticks当中放入了一个list。
最后我们画出来的图像的x轴就是根据这个list进行划分的,也就是说我们不仅可以定义坐标轴的范围还可以定义它的间隔。有的时候自动绘制出来的图像的范围以及间隔可能没有那么好,需要我们进行调整,这时候就需要用到xticks和yticks函数了。
8. python读取txt文件转化为折线图后怎么实现滤波器
需要安装matplotlib库,可以用如下命令安装:
pip install matplotlib
1
txt文本数据如下所示(示例中的每一行内部用空格分开):
100 0.6692215
200 0.57682794
300 0.45037615
400 0.42214713
500 0.45073098
600 0.4728373
700 0.48083866
800 0.3751492
900 0.4249844
1000 0.36427215
1100 0.36209464
1200 0.40490758
1300 0.3774191
1400 0.34719718
1500 0.3648946
1600 0.261855
1700 0.4321903
1800 0.35071397
1900 0.279996
2000 0.30030474
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
适用于Python3的代码如下所示:
import matplotlib.pyplot as plt
input_txt = 'demo.txt'
x = []
y = []
f = open(input_txt)
for line in f:
line = line.strip('\n')
line = line.split(' ')
x.append(float(line[0]))
y.append(float(line[1]))
f.close
plt.plot(x, y, marker='o', label='lost plot')
plt.xticks(x[0:len(x):2], x[0:len(x):2], rotation=45)
plt.margins(0)
plt.xlabel("train step")
plt.ylabel("lost")
plt.title("matplotlip plot")
plt.tick_params(axis="both")
plt.show()
9. python matplot 的xticks怎么用
主要使用的是bar函数 效果还不错吧~ import matplotlib.pyplot as pltimport numpy as npplt.rc('font', family='SimHei', size=13)num = np.array([13325, 9403, 9227, 8651])ratio = np.array([0.75, 0.76, 0.72, 0.75])men = num * ratiowome...
10. python画正余弦函数图像
用python怎样画出如题所示的正余弦函数图像? 如此编写代码,使其中两个轴、图例、刻度,大小,LaTex公式等要素与原图一致,需要用到的代码如下,没有缩进:
#-*-codeing:utf-8;-*-
from matplotlib import pyplot as plt
import numpy as np
a=np.linspace(0,360,980)
b=np.sin(a/180*np.pi)
c=np.cos(a/180*np.pi)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_xlim([0, 360])
ax.plot(a,b,label=r"$y=sin( heta)$")
ax.plot(a,c,label=r"$y=cos( heta)$")
ax.grid(True)
ax.set_ylabel(r"$y$")
ax.set_xlabel(r"$ heta$")
plt.xticks(np.arange(0,360+1,45))
plt.title("Sine & Cosine Waves")
plt.legend()
plt.savefig("SinCosWaveDegFont.jpg")
plt.show()
代码输出的文件的图