❶ 什么是R/python语言
Python是一种解释型、面向对象、动态数据类型的高级程序设计语言。
Python的设计理念是“简单”、“明确”、“优雅”。
Python由Guido van Rossum于1989年底发明,第一个公开发行版发行于1991年。
像Perl语言一样, Python 源代码同样遵循 GPL(GNU General Public License)协议。 对比Java 读取文件 在 Java中需要10行代码 Python只需要两行.
R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。
❷ 学习量化选择Python还是R比较好
python对于新手来说较容易入门,而且python目前国内多家量化交易平台都支持,比如优矿、掘金量化、米筐、聚宽等,反而支持R语言的平台很少,所以说python语言做量化才是主流。
❸ python和r数据分析哪个更好
2012年的时候我们说R是学术界的主流,但是现在Python正在慢慢取代R在学术界的地位。不知道是不是因为大数据时代的到来。
Python与R相比速度要快。Python可以直接处理上G的数据;R不行,R分析数据时需要先通过数据库把大数据转化为小数据(通过groupby)才能交给R做分析,因此R不可能直接分析行为详单,只能分析统计结果。所以有人说:Python=R+SQL/Hive,并不是没有道理的。
Python的一个最明显的优势在于其胶水语言的特性,很多书里也都会提到这一点,一些底层用C写的算法封装在Python包里后性能非常高效
(Python的数据挖掘包Orange canve
中的决策树分析50万用户10秒出结果,用R几个小时也出不来,8G内存全部占满)。但是,凡事都不绝对,如果R矢量化编程做得好的话(有点小难度),会
使R的速度和程序的长度都有显着性提升。
R的优势在于有包罗万象的统计函数可以调用,特别是在时间序列分析方面,无论是经典还是前沿的方法都有相应的包直接使用。
相比之下,Python之前在这方面贫乏不少。但是,现在Python有了
pandas。pandas提供了一组标准的时间序列处理工具和数据算法。因此,你可以高效处理非常大的时间序列,轻松地进行切片/切块、聚合、对定期
/不定期的时间序列进行重采样等。可能你已经猜到了,这些工具中大部分都对金融和经济数据尤为有用,但你当然也可以用它们来分析服务器日志数据。于是,近
年来,由于Python有不断改良的库(主要是pandas),使其成为数据处理任务的一大替代方案。
做过几个实验:
1. 用python实现了一个统计方法,其中用到了ctypes,multiprocess。
之后一个项目要做方法比较,又用回R,发现一些bioconctor上的包已经默认用parallel了。(但那个包还是很慢,一下子把所有线程都用掉了,导致整个电脑使用不能,看网页非常卡~)
2. 用python pandas做了一些数据整理工作,类似数据库,两三个表来回查、匹配。感觉还是很方便的。虽然这些工作R也能做,但估计会慢点,毕竟几十万行的条目了。
3. 用python matplotlib画图。pyplot作图的方式和R差异很大,R是一条命令画点东
西,pylot是准备好了以后一起出来。pyplot的颜色选择有点尴尬,默认颜色比较少,之后可用html的颜色,但是名字太长了~。pyplot
的legend比R 好用多了,算是半自动化了。pyplot画出来后可以自由拉升缩放,然后再保存为图片,这点比R好用。
总的来说Python是一套比较平衡的语言,各方面都可以,无论是对其他语言的调用,和数据源的连接、读取,对系统的操作,还是正则表达和文字处
理,Python都有着明显优势。
而R是在统计方面比较突出。但是数据分析其实不仅仅是统计,前期的数据收集,数据处理,数据抽样,数据聚类,以及比较复杂的数据挖掘算法,数据建模等等
这些任务,只要是100M以上的数据,R都很难胜任,但是Python却基本胜任。
结合其在通用编程方面的强大实力,我们完全可以只使用Python这一种语言去构建以数据为中心的应用程序。
但世上本没有最好的软件或程序,也鲜有人能把单一语言挖掘运用到极致。尤其是很多人早先学了R,现在完全不用又舍不得,所以对于想要学以致用的人来说,如果能把R和Python相结合,就更好不过了。
❹ Python和R语言的区别
如下:
Python入门简单,而R则相对比较难一些。R做文本挖掘现在还有点弱,当然优点在于函数都给你写好了,你只需要知道参数的形式就行了,有时候即使参数形式不对,R也能"智能地”帮你适应。这种简单的软件适合想要专注于业务的人。
Python几乎都可以做,函数比R多,比R快。它是一门语言,R更像是一种软件,所以python更能开发出flexible的算法。
Python适合处理大量数据,而R则在这方面有很多力不从心,当然这么说的前提是对于编程基础比较一般的童鞋,对于大牛来说,多灵活运用矢量化编程的话,R的速度也不会太差。
介绍
Python和R本身在数据分析和数据挖掘方面都有比较专业和全面的模块,很多常用的功能,比如矩阵运算、向量运算等都有比较高级的用法,所以使用起来产出比大。
这两门语言对于平台方面适用性比较广,linux、window都可以使用,并且代码可移植性还算不错的。对于学数理统计的人来说,应该大多用过MATLAB以及mintab等工具,Python和R比较贴近这些常用的数学工具,使用起来有种亲切感。
❺ python 和 r 的区别 知乎
有人说Python和R的区别是显而易见的,因为R是针对统计的,python是给程序员设计的,其实这话对Python多多少少有些不公平。2012年的时候我们说R是学术界的主流,但是现在Python正在慢慢取代R在学术界的地位。不知道是不是因为大数据时代的到来。
Python与R相比速度要快。Python可以直接处理上G的数据;R不行,R分析数据时需要先通过数据库把大数据转化为小数据(通过groupby)才能交给R做分析,因此R不可能直接分析行为详单,只能分析统计结果。所以有人说:Python=R+SQL/Hive,并不是没有道理的。
Python的一个最明显的优势在于其胶水语言的特性,很多书里也都会提到这一点,一些底层用C写的算法封装在Python包里后性能非常高效(Python的数据挖掘包Orange canve 中的决策树分析50万用户10秒出结果,用R几个小时也出不来,8G内存全部占满)。但是,凡事都不绝对,如果R矢量化编程做得好的话(有点小难度),会使R的速度和程序的长度都有显着性提升。
R的优势在于有包罗万象的统计函数可以调用,特别是在时间序列分析方面,无论是经典还是前沿的方法都有相应的包直接使用。
相比之下,Python之前在这方面贫乏不少。但是,现在Python有了pandas。pandas提供了一组标准的时间序列处理工具和数据算法。因此,你可以高效处理非常大的时间序列,轻松地进行切片/切块、聚合、对定期/不定期的时间序列进行重采样等。可能你已经猜到了,这些工具中大部分都对金融和经济数据尤为有用,但你当然也可以用它们来分析服务器日志数据。于是,近年来,由于Python有不断改良的库(主要是pandas),使其成为数据处理任务的一大替代方案。
做过几个实验:
1. 用python实现了一个统计方法,其中用到了ctypes,multiprocess。
之后一个项目要做方法比较,又用回R,发现一些bioconctor上的包已经默认用parallel了。(但那个包还是很慢,一下子把所有线程都用掉了,导致整个电脑使用不能,看网页非常卡~)
2. 用python pandas做了一些数据整理工作,类似数据库,两三个表来回查、匹配。感觉还是很方便的。虽然这些工作R也能做,但估计会慢点,毕竟几十万行的条目了。
3. 用python matplotlib画图。pyplot作图的方式和R差异很大,R是一条命令画点东西,pylot是准备好了以后一起出来。pyplot的颜色选择有点尴尬,默认颜色比较少,之后可用html的颜色,但是名字太长了~。pyplot 的legend比R 好用多了,算是半自动化了。pyplot画出来后可以自由拉升缩放,然后再保存为图片,这点比R好用。
总的来说Python是一套比较平衡的语言,各方面都可以,无论是对其他语言的调用,和数据源的连接、读取,对系统的操作,还是正则表达和文字处理,Python都有着明显优势。 而R是在统计方面比较突出。但是数据分析其实不仅仅是统计,前期的数据收集,数据处理,数据抽样,数据聚类,以及比较复杂的数据挖掘算法,数据建模等等这些任务,只要是100M以上的数据,R都很难胜任,但是Python却基本胜任。
结合其在通用编程方面的强大实力,我们完全可以只使用Python这一种语言去构建以数据为中心的应用程序。
但世上本没有最好的软件或程序,也鲜有人能把单一语言挖掘运用到极致。尤其是很多人早先学了R,现在完全不用又舍不得,所以对于想要学以致用的人来说,如果能把R和Python相结合,就更好不过了,很早看过一篇文章——让R与Python共舞,咱们坛子里有原帖,就不多说了,看完会有更多启发。
BTW: 如果之前没有学过R,可以先学Python然后决定是不是学R,如果学了R,学Python的时候会更快上手。
❻ R语言与Python是什么
都是程序计算机语言。
Python入门简单,而R则相对比较难一些。R做文本挖掘现在还有点弱,当然优点在于函数都给你写好了,你只需要知道参数的形式就行了,有时候即使参数形式不对,R也能"智能地”帮你适应。这种简单的软件适合想要专注于业务的人。
Python几乎都可以做,函数比R多,比R快。它是一门语言,R更像是一种软件,所以python更能开发出flexible的算法。
相关介绍
Python和R本身在数据分析和数据挖掘方面都有比较专业和全面的模块,很多常用的功能,比如矩阵运算、向量运算等都有比较高级的用法,所以使用起来产出比大。
这两门语言对于平台方面适用性比较广,linux、window都可以使用,并且代码可移植性还算不错的。对于学数理统计的人来说,应该大多用过MATLAB以及mintab等工具,Python和R比较贴近这些常用的数学工具,使用起来有种亲切感。
❼ 小白求教,Python和R语言的区别
一个是源于统计,慢慢可能会发展成一门语言;一个是编程语言,涉及到了统计大数据。两者本质是不同的,虽然有一些共性。
❽ Python和R到底该学哪个
都学。
R语言在数据分析方面比较有用;Python则用途比较广泛,是近几年比较流行的编程语言之一。
我买了本核心编程二在学Python 2.7,也想跟着网上的教程学R语言。
R语言学习时间不长,1个多月应该就可以入门。
❾ python和r语言的区别是什么
在从事数据分析行业中,我们都会从R与Python当中进行选择,但是,从这两个异常强大、灵活好用的数据分析语中选择,却是非常难以选择的。
为了让大家能选择出更适合自己的语言,我们将两种语言进行简单的对比。
Stack Overflow趋势对比
相关推荐:《Python视频教程》
上图显示了自从2008年(Stack Overflow 成立)以来,这两种语言随着时间的推移而发生的变化。
R和Python在数据科学领域展开激烈竞争,我们来看看他们各自的平台份额,并将2016与2017年进行比较:
我们再从适用场景、任务、数据处理能力、开放环境来分析:
适用场景
R适用于数据分析任务需要独立计算或单个服务器的应用场景。Python作为一种粘合剂语言,在数据分析任务中需要与Web应用程序集成或者当一条统计代码需要插入到生产数据库中时,使用Python更好。
任务
在进行探索性统计分析时,R胜出。它非常适合初学者,统计模型仅需几行代码即可实现。Python作为一个完整而强大的编程语言,是部署用于生产使用的算法的有力工具。
数据处理能力
有了大量针对专业程序员以及非专业程序员的软件包和库的支持,不管是执行统计测试还是创建机器学习模型,R语言都得心应手。
Python最初在数据分析方面不是特别擅长,但随着NumPy、Pandas以及其他扩展库的推出,它已经逐渐在数据分析领域获得了广泛的应用。
开发环境
对于R语言,需要使用R Studio。对于Python,有很多Python IDE可供选择,其中Spyder和IPython Notebook是最受欢迎的。
R 和 Python 详细对比
R和Python之间有很强的关联,并且这两种语言日益普及,很难说选对其一,事实上日常用户和数据科学家可以同时利用这两种语言。
❿ python字符串前缀 u和r的区别
以r或R开头的python中的字符串表示(非转义的)原始字符串
python里面的字符,如果开头处有个r,比如:
(r’^time/plus/d{1,2}/$’, hours_ahead)
说明字符串r"XXX"中的XXX是普通字符。有普通字符相比,其他相对特殊的字符,其中可能包含转义字符,即那些,反斜杠加上对应字母,表示对应的特殊含义的,比如最常见的” "表示换行," "表示Tab等。
而如果是以r开头,那么说明后面的字符,都是普通的字符了,即如果是“ ”那么表示一个反斜杠字符,一个字母n,而不是表示换行了。以r开头的字符,常用于正则表达式,对应着re模块。
以u或U开头的字符串表示unicode字符串
Unicode是书写国际文本的标准方法。如果你想要用非英语写文本,那么你需要有一个支持Unicode的编辑器。类似地,Python允许你处理Unicode文本——你只需要在字符串前加上前缀u或U。