⑴ 如何入门 python 爬虫
个人觉得:
新手学习python爬取网页先用下面4个库就够了:(第4个是实在搞不定用的,当然某些特殊情况它也可能搞不定)
1. 打开网页,下载文件:urllib
2. 解析网页:BeautifulSoup,熟悉JQuery的可以用Pyquery
3. 使用Requests来提交各种类型的请求,支持重定向,cookies等。
4. 使用Selenium,模拟浏览器提交类似用户的操作,处理js动态产生的网页
这几个库有它们各自的功能。配合起来就可以完成爬取各种网页并分析的功能。具体的用法可以查他们的官网手册(上面有链接)。
做事情是要有驱动的,如果你没什么特别想抓取的,新手学习可以从这个闯关网站开始
,目前更新到第五关,闯过前四关,你应该就掌握了这些库的基本操作。
实在闯不过去,再到这里看题解吧,第四关会用到并行编程。(串行编程完成第四关会很费时间哦),第四,五关只出了题,还没发布题解。。。
学完这些基础,再去学习scrapy这个强大的爬虫框架会更顺些。这里有它的中文介绍。
这是我在知乎的回答,直接转过来有些链接没有生效,可以到这里看原版,http://www.hu.com/question/20899988/answer/59131676
⑵ Python 最简单爬虫爬取数据(一):如何请求
import requests
url=‘http://www..com’
r = requests.get(url,timeout=10)
r.raise_for_status()
r.encoding = r.apparent_encoding
print( r.text)
⑶ python可以爬取什么数据
一、爬取我们所需要的一线链接
channel_extract.py
这里的一线链接也就是我们所说的大类链接:
from bs4 import BeautifulSoupimport requests
start_url = 'http://lz.ganji.com/wu/'host_url = 'http://lz.ganji.com/'def get_channel_urls(url):
wb_data = requests.get(url)
soup = BeautifulSoup(wb_data.text, 'lxml')
links = soup.select('.fenlei > dt > a') #print(links)
for link in links:
page_url = host_url + link.get('href')
print(page_url)#get_channel_urls(start_url)channel_urls = '''
http://lz.ganji.com/jiaju/
http://lz.ganji.com/rironghuo/
http://lz.ganji.com/shouji/
http://lz.ganji.com/bangong/
http://lz.ganji.com/nongyongpin/
http://lz.ganji.com/jiadian/
http://lz.ganji.com/ershoubijibendiannao/
http://lz.ganji.com/ruanjiantushu/
http://lz.ganji.com/yingyouyunfu/
http://lz.ganji.com/diannao/
http://lz.ganji.com/xianlipin/
http://lz.ganji.com/fushixiaobaxuemao/
http://lz.ganji.com/meironghuazhuang/
http://lz.ganji.com/shuma/
http://lz.ganji.com/laonianyongpin/
http://lz.ganji.com/xuniwupin/
'''
那么拿我爬取的58同城为例就是爬取了二手市场所有品类的链接,也就是我说的大类链接;
找到这些链接的共同特征,用函数将其输出,并作为多行文本储存起来。
二、获取我们所需要的详情页面的链接和详情信息
page_parsing.py
1、说说我们的数据库:
先看代码:
#引入库文件from bs4 import BeautifulSoupimport requestsimport pymongo #python操作MongoDB的库import reimport time#链接和建立数据库client = pymongo.MongoClient('localhost', 27017)
ceshi = client['ceshi'] #建ceshi数据库ganji_url_list = ceshi['ganji_url_list'] #建立表文件ganji_url_info = ceshi['ganji_url_info']123456789101112
2、判断页面结构是否和我们想要的页面结构相匹配,比如有时候会有404页面;
3、从页面中提取我们想要的链接,也就是每个详情页面的链接;
这里我们要说的是一个方法就是:
item_link = link.get('href').split('?')[0]12
这里的这个link什么类型的,这个get方法又是什么鬼?
后来我发现了这个类型是
<class 'bs4.element.Tab>1
如果我们想要单独获取某个属性,可以这样,例如我们获取它的 class 叫什么
print soup.p['class']
#['title']12
还可以这样,利用get方法,传入属性的名称,二者是等价的
print soup.p.get('class')#['title']12
下面我来贴上代码:
#爬取所有商品的详情页面链接:def get_type_links(channel, num):
list_view = '{0}o{1}/'.format(channel, str(num)) #print(list_view)
wb_data = requests.get(list_view)
soup = BeautifulSoup(wb_data.text, 'lxml')
linkOn = soup.select('.pageBox') #判断是否为我们所需页面的标志;
#如果爬下来的select链接为这样:div.pageBox > ul > li:nth-child(1) > a > span 这里的:nth-child(1)要删掉
#print(linkOn)
if linkOn:
link = soup.select('.zz > .zz-til > a')
link_2 = soup.select('.js-item > a')
link = link + link_2 #print(len(link))
for linkc in link:
linkc = linkc.get('href')
ganji_url_list.insert_one({'url': linkc})
print(linkc) else:
4、爬取详情页中我们所需要的信息
我来贴一段代码:
#爬取赶集网详情页链接:def get_url_info_ganji(url):
time.sleep(1)
wb_data = requests.get(url)
soup = BeautifulSoup(wb_data.text, 'lxml') try:
title = soup.select('head > title')[0].text
timec = soup.select('.pr-5')[0].text.strip()
type = soup.select('.det-infor > li > span > a')[0].text
price = soup.select('.det-infor > li > i')[0].text
place = soup.select('.det-infor > li > a')[1:]
placeb = [] for placec in place:
placeb.append(placec.text)
tag = soup.select('.second-dt-bewrite > ul > li')[0].text
tag = ''.join(tag.split()) #print(time.split())
data = { 'url' : url, 'title' : title, 'time' : timec.split(), 'type' : type, 'price' : price, 'place' : placeb, 'new' : tag
}
ganji_url_info.insert_one(data) #向数据库中插入一条数据;
print(data) except IndexError: 21222324252627282930
四、我们的主函数怎么写?
main.py
看代码:
#先从别的文件中引入函数和数据:from multiprocessing import Poolfrom page_parsing import get_type_links,get_url_info_ganji,ganji_url_listfrom channel_extract import channel_urls#爬取所有链接的函数:def get_all_links_from(channel):
for i in range(1,100):
get_type_links(channel,i)#后执行这个函数用来爬取所有详情页的文件:if __name__ == '__main__':# pool = Pool()# # pool = Pool()# pool.map(get_url_info_ganji, [url['url'] for url in ganji_url_list.find()])# pool.close()# pool.join()#先执行下面的这个函数,用来爬取所有的链接:if __name__ == '__main__':
pool = Pool()
pool = Pool()
pool.map(get_all_links_from,channel_urls.split())
pool.close()
pool.join()
五、计数程序
count.py
用来显示爬取数据的数目;
import timefrom page_parsing import ganji_url_list,ganji_url_infowhile True: # print(ganji_url_list.find().count())
# time.sleep(5)
print(ganji_url_info.find().count())
time.sleep(5)
⑷ python可以爬取个人信息吗
只能爬取公示出来的信息,不能爬取未公示的信息
⑸ python怎么爬取天眼查工商基本信息
tamp=1487746860&ver=1&signature=*dbquyH*Zvd2f0gmY25-aGiF5C9ULYIwhEDbrJsGW4uBVEKw*Q5mg=中有写道:
天眼查数据获取分为两块,其中一块为大量索引信息获取,此方式天眼查没有做反爬机制,因此代码直接就可以获取,详细的代码及方式可参考知乎专栏的一篇文章
第二块为企业详细信息获取,天眼查做了相应的反爬机制,需要研究穿插在几万行代码里的加密算法,获取cookie才能成功获取企业数据,且他们有专门的反爬虫工程师,想破解很难。
⑹ python 怎么爬取app端数据
可以,但是不提倡这种行为 1,在手机上设置代理,代理到你的电脑上 2,再在电脑上用tcpmp或者其他图形化的抓包工具获得数据包,分析这些数据包找到你要的数据 3,根据前两步的结果,写代码模拟app的操作获得你需要的数据
⑺ Python中怎么用爬虫爬
Python爬虫可以爬取的东西有很多,Python爬虫怎么学?简单的分析下:
如果你仔细观察,就不难发现,懂爬虫、学习爬虫的人越来越多,一方面,互联网可以获取的数据越来越多,另一方面,像 Python这样的编程语言提供越来越多的优秀工具,让爬虫变得简单、容易上手。
利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,比如:
知乎:爬取优质答案,为你筛选出各话题下最优质的内容。
淘宝、京东:抓取商品、评论及销量数据,对各种商品及用户的消费场景进行分析。
安居客、链家:抓取房产买卖及租售信息,分析房价变化趋势、做不同区域的房价分析。
拉勾网、智联:爬取各类职位信息,分析各行业人才需求情况及薪资水平。
雪球网:抓取雪球高回报用户的行为,对股票市场进行分析和预测。
爬虫是入门Python最好的方式,没有之一。Python有很多应用的方向,比如后台开发、web开发、科学计算等等,但爬虫对于初学者而言更友好,原理简单,几行代码就能实现基本的爬虫,学习的过程更加平滑,你能体会更大的成就感。
掌握基本的爬虫后,你再去学习Python数据分析、web开发甚至机器学习,都会更得心应手。因为这个过程中,Python基本语法、库的使用,以及如何查找文档你都非常熟悉了。
对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有人认为学爬虫必须精通 Python,然后哼哧哼哧系统学习 Python 的每个知识点,很久之后发现仍然爬不了数据;有的人则认为先要掌握网页的知识,遂开始 HTMLCSS,结果入了前端的坑,瘁……
但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从一开始就要有一个具体的目标。
在目标的驱动下,你的学习才会更加精准和高效。那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。这里给你一条平滑的、零基础快速入门的学习路径。
1.学习 Python 包并实现基本的爬虫过程
2.了解非结构化数据的存储
3.学习scrapy,搭建工程化爬虫
4.学习数据库知识,应对大规模数据存储与提取
5.掌握各种技巧,应对特殊网站的反爬措施
6.分布式爬虫,实现大规模并发采集,提升效率
⑻ 如何爬取滴滴顺风车订单 python
对手机端APP进行抓包,首先找到他们的API对API进行模拟登陆,在实时刷新订单,并返回去程序就OK了,不过值得注意的是这一类APP API 大部分使用的是长连接来链接,抓包的时候注意一下
⑼ python爬虫项目实战:爬取用户的所有信息,如性别、年龄等
python爬虫项目实战:
爬取糗事网络用户的所有信息,包括用户名、性别、年龄、内容等等。
10个步骤实现项目功能,下面开始实例讲解:
1.导入模块
import re
import urllib.request
from bs4 import BeautifulSoup
2.添加头文件,防止爬取过程被拒绝链接
def qiuShi(url,page):
################### 模拟成高仿度浏览器的行为 ##############
heads ={
'Connection':'keep-alive',
'Accept-Language':'zh-CN,zh;q=0.9',
'Accept':'text/html,application/xhtml+xml,application/xml;
q=0.9,image/webp,image/apng, / ;q=0.8',
'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36',
}
headall = []
for key,value in heads.items():
items = (key,value)
headall.append(items)
opener = urllib.request.build_opener()
opener.addheaders = headall
urllib.request.install_opener(opener)
data = opener.open(url).read().decode()
################## end ########################################
3.创建soup解析器对象
soup = BeautifulSoup(data,'lxml')
x = 0
4.开始使用BeautifulSoup4解析器提取用户名信息
############### 获取用户名 ########################
name = []
unames = soup.find_all('h2')
for uname in unames:
name.append(uname.get_text())
#################end#############################
5.提取发表的内容信息
############## 发表的内容 #########################
cont = []
data4 = soup.find_all('div',class_='content')
data4 = str(data4)
soup3 = BeautifulSoup(data4,'lxml')
contents = soup3.find_all('span')
for content in contents:
cont.append(content.get_text())
##############end####################################
6.提取搞笑指数
#################搞笑指数##########################
happy = []
data2 = soup.find_all('span',class_="stats-vote")
data2 = str(data2) # 将列表转换成字符串形式才可以使用
soup1 = BeautifulSoup(data2,'lxml')
happynumbers = soup1.find_all('i',class_="number")
for happynumber in happynumbers:
happy.append(happynumber.get_text())
##################end#############################
7.提取评论数
############## 评论数 ############################
comm = []
data3 = soup.find_all('a',class_='qiushi_comments')
data3 = str(data3)
soup2 = BeautifulSoup(data3,'lxml')
comments = soup2.find_all('i',class_="number")
for comment in comments:
comm.append(comment.get_text())
############end#####################################
8.使用正则表达式提取性别和年龄
######## 获取性别和年龄 ##########################
pattern1 = '<div class="articleGender (w ?)Icon">(d ?)</div>'
sexages = re.compile(pattern1).findall(data)
9.设置用户所有信息输出的格局设置
################## 批量输出用户的所以个人信息 #################
print()
for sexage in sexages:
sa = sexage
print(' ' 17, '= = 第', page, '页-第', str(x+1) + '个用户 = = ',' ' 17)
print('【用户名】:',name[x],end='')
print('【性别】:',sa[0],' 【年龄】:',sa[1])
print('【内容】:',cont[x])
print('【搞笑指数】:',happy[x],' 【评论数】:',comm[x])
print(' ' 25,' 三八分割线 ',' ' 25)
x += 1
###################end##########################
10.设置循环遍历爬取13页的用户信息
for i in range(1,14):
url = ' https://www.qiushike.com/8hr/page/'+str(i)+'/'
qiuShi(url,i)
运行结果,部分截图:
⑽ Python编程基础之(五)Scrapy爬虫框架
经过前面四章的学习,我们已经可以使用Requests库、Beautiful Soup库和Re库,编写基本的Python爬虫程序了。那么这一章就来学习一个专业的网络爬虫框架--Scrapy。没错,是框架,而不是像前面介绍的函数功能库。
Scrapy是一个快速、功能强大的网络爬虫框架。
可能大家还不太了解什么是框架,爬虫框架其实是实现爬虫功能的一个软件结构和功能组件的集合。
简而言之, Scrapy就是一个爬虫程序的半成品,可以帮助用户实现专业的网络爬虫。
使用Scrapy框架,不需要你编写大量的代码,Scrapy已经把大部分工作都做好了,允许你调用几句代码便自动生成爬虫程序,可以节省大量的时间。
当然,框架所生成的代码基本是一致的,如果遇到一些特定的爬虫任务时,就不如自己使用Requests库搭建来的方便了。
PyCharm安装
测试安装:
出现框架版本说明安装成功。
掌握Scrapy爬虫框架的结构是使用好Scrapy的重中之重!
先上图:
整个结构可以简单地概括为: “5+2”结构和3条数据流
5个主要模块(及功能):
(1)控制所有模块之间的数据流。
(2)可以根据条件触发事件。
(1)根据请求下载网页。
(1)对所有爬取请求进行调度管理。
(1)解析DOWNLOADER返回的响应--response。
(2)产生爬取项--scraped item。
(3)产生额外的爬取请求--request。
(1)以流水线方式处理SPIDER产生的爬取项。
(2)由一组操作顺序组成,类似流水线,每个操作是一个ITEM PIPELINES类型。
(3)清理、检查和查重爬取项中的HTML数据并将数据存储到数据库中。
2个中间键:
(1)对Engine、Scheler、Downloader之间进行用户可配置的控制。
(2)修改、丢弃、新增请求或响应。
(1)对请求和爬取项进行再处理。
(2)修改、丢弃、新增请求或爬取项。
3条数据流:
(1):图中数字 1-2
1:Engine从Spider处获得爬取请求--request。
2:Engine将爬取请求转发给Scheler,用于调度。
(2):图中数字 3-4-5-6
3:Engine从Scheler处获得下一个要爬取的请求。
4:Engine将爬取请求通过中间件发送给Downloader。
5:爬取网页后,Downloader形成响应--response,通过中间件发送给Engine。
6:Engine将收到的响应通过中间件发送给Spider处理。
(3):图中数字 7-8-9
7:Spider处理响应后产生爬取项--scraped item。
8:Engine将爬取项发送给Item Pipelines。
9:Engine将爬取请求发送给Scheler。
任务处理流程:从Spider的初始爬取请求开始爬取,Engine控制各模块数据流,不间断从Scheler处获得爬取请求,直至请求为空,最后到Item Pipelines存储数据结束。
作为用户,只需配置好Scrapy框架的Spider和Item Pipelines,也就是数据流的入口与出口,便可完成一个爬虫程序的搭建。Scrapy提供了简单的爬虫命令语句,帮助用户一键配置剩余文件,那我们便来看看有哪些好用的命令吧。
Scrapy采用命令行创建和运行爬虫
PyCharm打开Terminal,启动Scrapy:
Scrapy基本命令行格式:
具体常用命令如下:
下面用一个例子来学习一下命令的使用:
1.建立一个Scrapy爬虫工程,在已启动的Scrapy中继续输入:
执行该命令,系统会在PyCharm的工程文件中自动创建一个工程,命名为pythonDemo。
2.产生一个Scrapy爬虫,以教育部网站为例http://www.moe.gov.cn:
命令生成了一个名为demo的spider,并在Spiders目录下生成文件demo.py。
命令仅用于生成demo.py文件,该文件也可以手动生成。
观察一下demo.py文件:
3.配置产生的spider爬虫,也就是demo.py文件:
4.运行爬虫,爬取网页:
如果爬取成功,会发现在pythonDemo下多了一个t20210816_551472.html的文件,我们所爬取的网页内容都已经写入该文件了。
以上就是Scrapy框架的简单使用了。
Request对象表示一个HTTP请求,由Spider生成,由Downloader执行。
Response对象表示一个HTTP响应,由Downloader生成,有Spider处理。
Item对象表示一个从HTML页面中提取的信息内容,由Spider生成,由Item Pipelines处理。Item类似于字典类型,可以按照字典类型来操作。