导航:首页 > 编程语言 > python引入pytorch

python引入pytorch

发布时间:2022-11-16 14:18:12

① PyTorch到底好用在哪里

PyTorch是个开源的python机器学习库,在2017年由Facebook人工智能研究院(FAIR)推出面世。很多从业者都很推崇这款工具,下面小编给大家整理了一些关于PyTorch的一些基本知识,给各位网友做个参考。

3、学习PyTorch的必要性。

正是因为这款工具如此的好用,所以为了提升效率,很多程序员都将它添加进自己的学习计划当中。主要原因有四点:第一、多学一个框架,有备无患;第二、同类型功能的框架中PyTorch是最优秀的;第三、容易查找bug,后期查错非常方便;第四、更加简单直接,可以看懂底层的框架,对程序员的提升肉眼可见。

以上就是小编整理出来的PyTorch的相关知识。广大网友们,你们觉得如何?欢迎评论区留言交流。

② pytorch是什么

PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。

由Facebook人工智能研究院(FAIR)基于Torch推出了PyTorch。它是一个基于Python的可续计算包,提供两个高级功能:具有强大的GPU加速的张量计算(如NumPy)。包含自动求导系统的深度神经网络。

发展:

PyTorch的前身是Torch,其底层和Torch框架一样,但是使用Python重新写了很多内容,不仅更加灵活,支持动态图,而且提供了Python接口。它是由Torch7团队开发,是一个以Python优先的深度学习框架,不仅能够实现强大的GPU加速,同时还支持动态神经网络。

PyTorch既可以看作加入了GPU支持的numpy,同时也可以看成一个拥有自动求导功能的强大的深度神经网络。除了Facebook外,它已经被Twitter、CMU和Salesforce等机构采用。

③ 什么时候才能让PyTorch更像Python

明敏 发自 凹非寺
量子位 报道 | 公众号 QbitAI

到底是怎样的一个bug,能让95%的Pytorch库中招,就连特斯拉AI总监深受困扰?
还别说,这个bug虽小,但有够“狡猾”的。
这就是最近Reddit上热议的一个话题,是一位网友在使用再平常不过的Pytorch+Numpy组合时发现。
最主要的是,在代码能够跑通的情况下,它甚至还会影响模型的准确率!
除此之外,网友热议的另外一个点,竟然是:

而是它到底算不算一个bug?

这究竟是怎么一回事?
事情的起因是一位网友发现,在PyTorch中用NumPy来生成随机数时,受到数据预处理的限制,会多进程并行加载数据,但最后每个进程返回的随机数却是相同的。
他还举出例子证实了自己的说法。
如下是一个示例数据集,它会返回三个元素的随机向量。这里采用的批量大小分别为2,工作进程为4个。
然后神奇的事情发生了:每个进程返回的随机数都是一样的。
这个结果会着实让人有点一头雾水,就好像数学应用题求小明走一段路程需要花费多少时间,而你却算出来了负数。
发现了问题后,这位网友还在GitHub上下载了超过10万个PyTorch库,用同样的方法产生随机数。
结果更加令人震惊:居然有超过95%的库都受到这个问题的困扰!
这其中不乏PyTorch的官方教程和OpenAI的代码,连特斯拉AI总监Karpathy也承认自己“被坑过”!
但有一说一,这个bug想要解决也不难:只需要在每个epoch都重新设置seed,或者用python内置的随机数生成器就可以避免这个问题。
到底是不是bug?
如果这个问题已经可以解决,为什么还会引起如此大的讨论呢?
因为网友们的重点已经上升到了“哲学”层面:
这到底是不是一个bug?
在Reddit上有人认为:这不是一个bug。

虽然这个问题非常常见,但它并不算是一个bug,而是一个在调试时不可以忽略的点。

就是这个观点,激起了千层浪花,许多人都认为他忽略了问题的关键所在。

这不是产生伪随机数的问题,也不是numpy的问题,问题的核心是在于PyTorch中的DataLoader的实现

对于包含随机转换的数据加载pipeline,这意味着每个worker都将选择“相同”的转换。而现在NN中的许多数据加载pipeline,都使用某种类型的随机转换来进行数据增强,所以不重新初始化可能是一个预设。

另一位网友也表示这个bug其实是在预设程序下运行才出现的,应该向更多用户指出来。
并且95%以上的Pytorch库受此困扰,也绝不是危言耸听。
有人就分享出了自己此前的惨痛经历:

我认识到这一点是之前跑了许多进程来创建数据集时,然而发现其中一半的数据是重复的,之后花了很长的时间才发现哪里出了问题。

也有用户补充说,如果 95% 以上的用户使用时出现错误,那么代码就是错的。

顺便一提,这提供了Karpathy定律的另一个例子:即使你搞砸了一些非常基本代码,“neural nets want to work”。

你有踩过PyTorch的坑吗?
如上的bug并不是偶然,随着用PyTorch的人越来越多,被发现的bug也就越来越多,某乎上还有PyTorch的坑之总结,被浏览量高达49w。
其中从向量、函数到model.train(),无论是真bug还是自己出了bug,大家的血泪史还真的是各有千秋。
所以,关于PyTorch你可以分享的经验血泪史吗?
欢迎评论区留言讨论~
参考链接:
[1]https://tanelp.github.io/posts/a-bug-that-plagues-thousands-of-open-source-ml-projects/
[2]https://www.reddit.com/r/MachineLearning/comments/mocpgj/p_using_pytorch_numpy_a_bug_that_plagues/
[3]https://www.hu.com/question/67209417/answer/866488638
— 完 —

④ pytorch不同语言速度比较

pytorch不同语言速度比较:
1、编程语言不同:pytorch采用python语言。编程实际是C语言做底层和C++做接口torch采用lua语言。编程实际是C语言做底层和lua语言做接口的深度学习库。
2、依赖库:pytorch可调用python强大的第三方库,比如opencvtorch可调用lua库函数,目前lua库函数没有python多。
3、效率:python的debug功能比lua强大很多,所以pytorch效率大于torch。

⑤ 2.如图二,pytorch安装之后没有显示python的环境

1、首先进入Anaconda Prompt 环境。
2、其次检查是否安装成功: 在弹出的窗口有 (base) 则安装成功后创建虚拟环境。
3、最后输入conda create -n pytorch python即可显示安装环境。

⑥ pytorch、显卡、显卡驱动、cuda版本是如何对应的

做深度学习的小伙伴们可能都会在安装环境的时候经常遇到的cuda版本驱动版本以及和显卡是如何对应的,经常搞得特别糊涂,官网没有直接提供他们的对应关系,导致我们在升级显卡的时候发现原来的软件环境不兼容,出现各种奇奇怪怪的问题。

NVIDIA系列显卡做深度学习,需要在宿主机安装显卡驱动(driver),需要在docker中安装英伟达的科学计算库(cuda),在python中安装深度学习库(我主要用pytorch),driver依赖显卡,cuda依赖driver,pytorch依赖cuda,于是就会有一些版本依赖问题.

最近我在将显卡从GTX2070升级到GTX3090的时候,发现自己原来pytorch程序总会在.cuda()命令卡十分钟左右,并且还有其他异常。后来才知到GTX3090需要cuda11以上的版本才能正常运行,而我使用的python库pytorch为0.4.1,cuda版本为9.0,受制于当前pytorch版本,无法使用最新的显卡,那么这个是如何看出来的呢?又如何解决?

英伟达官网(参考 cuda-GPUs )并没有给出一个直接的关联关系,而是给了一个 Compute Capability ,让人摸不到头脑。

实际上这是一个中间数据,还需要另外一张表才能找到和cuda的对应关系,经过搜索我在维基网络(参考 CUDA ) 找到了答案。

同时,cuda对显卡驱动也有特定的要求,从英伟达官网(参考 cuda )继续寻找答案

我们再查询深度学习库(参考 pytorch )的版本对cuda的依赖关系

综合以上分析,GTX3090需要Compute Capability在8.6以上的cuda,而满足这个要求的cuda又只有11.0以上的版本。而cuda11版本又需要版本号>450的显卡驱动。

其实,从表中我们也可以分析出,cuda和显卡驱动基本都是向下兼容的,意味着我安装最新的cuda和显卡驱动,基本上可以支持以前的几乎所有显卡。当然了,代价是需要更新我们的python深度学习库比如pytorch,tensorflow等指定cuda的版本,否则可能会出现一些兼容问题。

所以最后我安装最新驱动,重新构建了docker,用英伟达官方提供的cuda11的作为基础镜像,参考github Docker-Ubuntu-Unity-noVNC , 更新pytorch0.4.1到1.7.1,甚至升级python版本3.5为3.9,索性兼容性还不错,只做了少量改动,问题完美解决。

https://developer.nvidia.com/cuda-GPUs

https://en.wikipedia.org/wiki/CUDA

https://pytorch.org

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

⑦ Python中数据模块化你不容错过的库!

1、Scikit Learn

在沉溺于“深度学习”之前,所有人都应当从使用Scikit Learn来开启自己的机器学习之旅。Scikit Learn有六大主要模块,如下:

· 数据预处理

· 维度缩减

· 数据回归

· 数据分类

· 数据聚类分析

· 模型选择

只要能用好Scikit Learn,就已经算得上是一名优秀的数据科学家了。

2、Tensorflow

Tensorflow是由谷歌推出的开源机器学习库。它最受欢迎的功能便是Tensorboard上的数据流图像。

Tensorboard是一个基于网页自动生成的仪表盘,它将数据学习流和结果进行了可视化处理,这一功能对于排错和展示都十分有用。

3、PyTorch

PyTorch是由Facebook发布的一个开源库,用作Python的公用机器学习框架。与Tensorflow相比,PyTorch的语句更加适用于Python。正因此,学习使用PyTorch也更加容易。

作为一个专注于深度学习的库,PyTorch还具有非常丰富的应用程序接口函数和内置函数来协助数据科学家更加快捷地训练自己的深度学习模型。

更多Python知识,请关注Python视频教程!

⑧ pytorch python 什么关系

PyTorch is a deep learning framework that puts Python first.
We are in an early-release Beta. Expect some adventures.
Python[1] (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido van Rossum于1989年发明,第一个公开发行版发行于1991年。
Python是纯粹的自由软件, 源代码和解释器CPython遵循 GPL(GNU General Public License)协议[2] 。Python语法简洁清晰,特色之一是强制用空白符(white space)作为语句缩进。
Python具有丰富和强大的库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中[3] 有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。
7月20日,IEEE发布2017年编程语言排行榜:Python高居首位[4] 。

⑨ pytorch和python的区别是什么

PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。

2017年1月,由Facebook人工智能研究院(FAIR)基于Torch推出了PyTorch。它是一个基于Python的可续计算包,提供两个高级功能:1、具有强大的GPU加速的张量计算(如NumPy)。2、包含自动求导系统的深度神经网络。

PyTorch 是一个基于 Python 的科学计算包,主要定位两类人群:

要介绍PyTorch之前,不得不说一下Torch。Torch是一个有大量机器学习算法支持的科学计算框架,是一个与Numpy类似的张量(Tensor) 操作库,其特点是特别灵活,但因其采用了小众的编程语言是Lua,所以流行度不高,这也就有了PyTorch的出现。所以其实Torch是 PyTorch的前身,它们的底层语言相同,只是使用了不同的上层包装语言。


python就是一门编程语言

⑩ pytorch是什么

PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。

2017年1月,由Facebook人工智能研究院(FAIR)基于Torch推出了PyTorch。它是一个基于Python的可续计算包,提供两个高级功能:

1、具有强大的GPU加速的张量计算(如NumPy);

2、包含自动求导系统的深度神经网络。

优点

1、PyTorch是相当简洁且高效快速的框架;

2、设计追求最少的封装;

3、设计符合人类思维,它让用户尽可能地专注于实现自己的想法;

4、与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新;

5、PyTorch作者亲自维护的论坛供用户交流和求教问题;

6、入门简单。

(10)python引入pytorch扩展阅读:

模块

1、Autograd模块

PyTorch使用一种称为自动微分的方法。记录器记录已执行的操作,然后向后重播以计算梯度。当构建神经网络以通过计算前向传递参数的微分来节省一个时间时,此方法特别强大。

2、Optim模块

torch.optim是实现用于构建神经网络的各种优化算法的模块。大多数常用方法已受支持,因此无需从头开始构建它们。

3、nn模块

PyTorch autograd使定义计算图和获取梯度变得容易,但是原始的autograd对于定义复杂的神经网络而言可能太低了。这是nn模块可以提供帮助的地方。

阅读全文

与python引入pytorch相关的资料

热点内容
银河v10驱动重编译 浏览:889
电脑上文件夹右击就会崩溃 浏览:689
右美维持算法 浏览:938
php基础编程教程pdf 浏览:219
穿越之命令与征服将军 浏览:351
android广播重复 浏览:832
像阿里云一样的服务器 浏览:318
水冷空调有压缩机吗 浏览:478
访问日本服务器可以做什么 浏览:433
bytejava详解 浏览:448
androidjava7 浏览:385
服务器在山洞里为什么还有油 浏览:886
天天基金app在哪里下载 浏览:974
服务器软路由怎么做 浏览:292
冰箱压缩机出口 浏览:228
OPT最佳页面置换算法 浏览:645
网盘忘记解压码怎么办 浏览:853
文件加密看不到里面的内容 浏览:654
程序员脑子里都想什么 浏览:434
oppp手机信任app在哪里设置 浏览:189