❶ 如何用python爬虫抓取网页内容
首先,你要安装requests和BeautifulSoup4,然后执行如下代码.
importrequests
frombs4importBeautifulSoup
iurl='http://news.sina.com.cn/c/nd/2017-08-03/doc-ifyitapp0128744.shtml'
res=requests.get(iurl)
res.encoding='utf-8'
#print(len(res.text))
soup=BeautifulSoup(res.text,'html.parser')
#标题
H1=soup.select('#artibodyTitle')[0].text
#来源
time_source=soup.select('.time-source')[0].text
#来源
origin=soup.select('#artibodyp')[0].text.strip()
#原标题
oriTitle=soup.select('#artibodyp')[1].text.strip()
#内容
raw_content=soup.select('#artibodyp')[2:19]
content=[]
forparagraphinraw_content:
content.append(paragraph.text.strip())
'@'.join(content)
#责任编辑
ae=soup.select('.article-editor')[0].text
这样就可以了
❷ Python爬虫可以爬取什么
Python爬虫可以爬取的东西有很多,Python爬虫怎么学?简单的分析下:
如果你仔细观察,就不难发现,懂爬虫、学习爬虫的人越来越多,一方面,互联网可以获取的数据越来越多,另一方面,像 Python这样的编程语言提供越来越多的优秀工具,让爬虫变得简单、容易上手。
利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,比如:
知乎:爬取优质答案,为你筛选出各话题下最优质的内容。
淘宝、京东:抓取商品、评论及销量数据,对各种商品及用户的消费场景进行分析。
安居客、链家:抓取房产买卖及租售信息,分析房价变化趋势、做不同区域的房价分析。
拉勾网、智联:爬取各类职位信息,分析各行业人才需求情况及薪资水平。
雪球网:抓取雪球高回报用户的行为,对股票市场进行分析和预测。
爬虫是入门Python最好的方式,没有之一。Python有很多应用的方向,比如后台开发、web开发、科学计算等等,但爬虫对于初学者而言更友好,原理简单,几行代码就能实现基本的爬虫,学习的过程更加平滑,你能体会更大的成就感。
掌握基本的爬虫后,你再去学习Python数据分析、web开发甚至机器学习,都会更得心应手。因为这个过程中,Python基本语法、库的使用,以及如何查找文档你都非常熟悉了。
对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有人认为学爬虫必须精通 Python,然后哼哧哼哧系统学习 Python 的每个知识点,很久之后发现仍然爬不了数据;有的人则认为先要掌握网页的知识,遂开始 HTMLCSS,结果入了前端的坑,瘁……
但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从一开始就要有一个具体的目标。
在目标的驱动下,你的学习才会更加精准和高效。那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。这里给你一条平滑的、零基础快速入门的学习路径。
1.学习 Python 包并实现基本的爬虫过程
2.了解非结构化数据的存储
3.学习scrapy,搭建工程化爬虫
4.学习数据库知识,应对大规模数据存储与提取
5.掌握各种技巧,应对特殊网站的反爬措施
6.分布式爬虫,实现大规模并发采集,提升效率
一
学习 Python 包并实现基本的爬虫过程
大部分爬虫都是按“发送请求——获得页面——解析页面——抽取并储存内容”这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。
Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。
如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多,一般的静态网站根本不在话下,豆瓣、糗事网络、腾讯新闻等基本上都可以上手了。
当然如果你需要爬取异步加载的网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化,这样,知乎、时光网、猫途鹰这些动态的网站也可以迎刃而解。
二
了解非结构化数据的存储
爬回来的数据可以直接用文档形式存在本地,也可以存入数据库中。
开始数据量不大的时候,你可以直接通过 Python 的语法或 pandas 的方法将数据存为csv这样的文件。
当然你可能发现爬回来的数据并不是干净的,可能会有缺失、错误等等,你还需要对数据进行清洗,可以学习 pandas 包的基本用法来做数据的预处理,得到更干净的数据。
三
学习 scrapy,搭建工程化的爬虫
掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。
scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。
学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。
四
学习数据库基础,应对大规模数据存储
爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。
MongoDB 可以方便你去存储一些非结构化的数据,比如各种评论的文本,图片的链接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。
因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。
五
掌握各种技巧,应对特殊网站的反爬措施
当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。
遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等。
往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了.
六
分布式爬虫,实现大规模并发采集
爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:分布式爬虫。
分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具。
Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。
所以有些东西看起来很吓人,但其实分解开来,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现一些更加自动化的数据获取。
你看,这一条学习路径下来,你已然可以成为老司机了,非常的顺畅。所以在一开始的时候,尽量不要系统地去啃一些东西,找一个实际的项目(开始可以从豆瓣、小猪这种简单的入手),直接开始就好。
因为爬虫这种技术,既不需要你系统地精通一门语言,也不需要多么高深的数据库技术,高效的姿势就是从实际的项目中去学习这些零散的知识点,你能保证每次学到的都是最需要的那部分。
当然唯一麻烦的是,在具体的问题中,如何找到具体需要的那部分学习资源、如何筛选和甄别,是很多初学者面临的一个大问题。
以上就是我的回答,希望对你有所帮助,望采纳。
❸ python 爬虫回复中的表情怎么处理
这个问题是你抓取回来的数据是gbk编码的,在抓取回来的数据后面加一句.decode('gbk') 把内容按照gbk进行解析!
❹ python爬虫大神帮忙看一下啊,使用 urllib.urlretrieve()下载不到图片,具体图片看下图代码
更改一下地址啊,因为你要下载的是图片,所以要用图片后缀,改成:
work_path="E:/"+str(imgname)+".jpg"
urllib.request.urlretrieve(imgurl,work_path)
这个imgname你定义一个循环的名字即可
❺ 求《用Python写网络爬虫》全文免费下载百度网盘资源,谢谢~
《用Python写网络爬虫》网络网盘pdf最新全集下载:
链接: https://pan..com/s/1dACwnEaWo89edT-6y689Dg
❻ python 网络爬虫,怎么自动保存图片
defdownload_poster_image(movie):#定义一个下载图片函数
src=movie#取出它的url
r=requests.get(src)#去获取这个url
fname=url.split('/')[-1]#从url里面获取这个文件名
withopen(fname,'wb')asf:#应答的内容写进去并且使用二进制
f.write(s.content)
movie['poster-path']=fname
res=requests.get(url)
img_url=res.xpath('//img[@class="q-img-item"]/@src')
movie=img_url
download_poster_image(movie)#执行函数
❼ python 网络爬虫
把你要爬的网站写下来,然后代码贴出来才能帮你
❽ Python网络爬虫系列2
2.URN
统一资源名称(Uniform Resource Name,URN)
现在很少提及。这一术语的使用已被限制更少的“URI”取代
3.URI
统一资源标志符(Uniform Resource Identifier,URI)
URI可被视为定位符(URL),名称(URN)或两者兼备。
4.JavaScript 是一门多范式的语言,它支持面向对象程序设计.
作用:交互行为behavior
浏览器中的JavaScript有三个要素:
文档对象模型: document
作用:操控页面
5.页面渲染方式
❾ Python编程网页爬虫工具集介绍
【导语】对于一个软件工程开发项目来说,一定是从获取数据开始的。不管文本怎么处理,机器学习和数据发掘,都需求数据,除了通过一些途径购买或许下载的专业数据外,常常需求咱们自己着手爬数据,爬虫就显得格外重要,那么Python编程网页爬虫东西集有哪些呢?下面就来给大家一一介绍一下。
1、 Beautiful Soup
客观的说,Beautifu Soup不完满是一套爬虫东西,需求协作urllib运用,而是一套HTML / XML数据分析,清洗和获取东西。
2、Scrapy
Scrapy相Scrapy, a fast high-level screen scraping and web crawling framework
for
Python.信不少同学都有耳闻,课程图谱中的许多课程都是依托Scrapy抓去的,这方面的介绍文章有许多,引荐大牛pluskid早年的一篇文章:《Scrapy
轻松定制网络爬虫》,历久弥新。
3、 Python-Goose
Goose最早是用Java写得,后来用Scala重写,是一个Scala项目。Python-Goose用Python重写,依靠了Beautiful
Soup。给定一个文章的URL, 获取文章的标题和内容很便利,用起来非常nice。
以上就是Python编程网页爬虫工具集介绍,希望对于进行Python编程的大家能有所帮助,当然Python编程学习不止需要进行工具学习,还有很多的编程知识,也需要好好学起来哦,加油!
❿ 怎么样编写Python爬虫抓取暴走漫画上gif图片
#-*-coding:utf-8-*-
importurllib.request
importbs4,os
page_sum=1#设置下载页数
path=os.getcwd()
path=os.path.join(path,'GIF')
ifnotos.path.exists(path):
os.mkdir(path)#创建文件夹
url=""#url地址
headers={#伪装浏览器
'User-Agent':'Mozilla/5.0(WindowsNT6.1;WOW64)AppleWebKit/537.36(KHTML,likeGecko)'
'Chrome/32.0.1700.76Safari/537.36'
}
forcountinrange(page_sum):
req=urllib.request.Request(
url=url+str(count+1),
headers=headers
)
print(req.full_url)
content=urllib.request.urlopen(req).read()
soup=bs4.BeautifulSoup(content)#BeautifulSoup
img_content=soup.findAll('img',attrs={'style':'width:460px'})
url_list=[img['src']forimginimg_content]#列表推导url
title_list=[img['alt']forimginimg_content]#图片名称
foriinrange(url_list.__len__()):
imgurl=url_list[i]
filename=path+os.sep+title_list[i]+".gif"
print(filename+":"+imgurl)#打印下载信息
urllib.request.urlretrieve(imgurl,filename)#下载图片