A. python操作Excel
因为工作上的需要,最近经常用Python对报表做Excel导入导出,特此做个笔记,方便日后查看。
首先我选择了Python-Excel下的xlrd和xlwt。需要注意的是,xlwt只支持生成xls,暂时还不支持xlsx。
读取主要是用到这两个方法,我想到就继续补充,更多用法请查阅官方文档
表格样式设置有XFStyle和easyxf两种方式
列宽在Excel里面用字符宽带来表示。xlwt以字符'0'的1/256宽为一个单位,默认表格宽度为2962,大致相当于11个字符宽度。设置Excel的列宽就大致等于,字符宽度 * 256 + 182 (有待继续考证,精度目前还行)
行高再Excel里面一般用磅来表示,磅 * 20 即是xlwt的数值。字体的大小也是用磅来设置。
设置页面方向
使用num_format_str来设置单元格类型。
特别是遇到时间的时候,Excel会自动转为May-2017这种格式,这时候就要设置为文本类型,防止自动转换
B. 怎样在Excel中使用python脚本
在Excel中准备调用的python代码:
def merge_sort_unique(lists):
s = set()
for L in lists:
s.update(L)
return sorted(s)
任意在本地建立一个目录,并保存这个代码并命名为Methods.py。我们一步步看看如何从Excel的工作表中如何调用这个脚本。打开Excel,填写一些数据以便提供python脚本处理,并保持这个表格于刚才的python脚本在同一目录下。你的工作表应该如下:
现在,备调用python脚本,创建一个新的模块(Insert | Mole)并敲以下VBA代码:
Function msu(lists As Range)
Set methods = PyMole("Methods", AddPath:=ThisWorkbook.Path)
Set result = PyCall(methods, "merge_sort_unique", PyTuple(lists.Value2))
msu = WorksheetFunction.Transpose(PyVar(result))
ExitFunction
EndFunction
C. Jquery从Python后台获取了一个二维数组,如何以表格形式显示在页面
假设你二维数组。a[][]
$table = $('table');
$.each(a,function(i)){
$.each(a[i],function(j)){
$table.append('<tr><td>' + a[i][j] + '</td></tr>')
}
}
D. 用Python tkinter 做一个图形界面表格需要带框架线
tkinter中可以用Treeview 显示数据,相当于table
E. 用python编程更新一个电子表格
循环遍历A,找到Garlic Celery 和lemons 写入B字段,读取出C字段, D=B*C
...........
F. python将表格展示的数据生成图片
最近有一个需求,在界面对表格进行自动截图,然后将图片存起来
第一种: selenium +chromedirver + pillow
使用自动化工具,网页截图, 通过元素定位到具体位置,pillow进行裁剪得出最理想结果,此方案还是存在很大误差,因为表格数据数量非固定的,计算误差很大,难以精准
第二种: prettytable + pillow
通过prettytable将数据生成简单表格布局,通过pillow 生成图片,这个方案简单容易,但是表格样式过于丑陋,暂不考虑
第三种: html-table + imgkit
通过html-table将数据生成带样式的html文件,然后使用imgkit 转换成图片,该方案是目前最理想的
1、环境安装
2、demo演示
imgkit官方文档: https://github.com/jarrekk/imgkit
G. python提取excel表中的数据两列
1、首先打开excel表格,在单元格中输入两列数据,需要将这两列数据进行比对相同数据。
2、然后在C1单元格中输入公式:=VLOOKUP(B1,A:A,1,0),意思是比对B1单元格中A列中是否有相同数据。
3、点击回车,即可将公式的计算结果显示出来,可以看到C1中显示的是B1在A列中找到的相同数据。
4、将公式向下填充,即可发现C列中显示出的数字即为有相同数据的,显示“#N/A”的为没有找到匹配数据的。
5、将C1-C4中的数据进行复制并粘贴成数值,即可完成相同数据的提取操作。
在实际研究中,我们经常需要获取大量数据,而这些数据很大一部分以pdf表格的形式呈现,如公司年报、发行上市公告等。面对如此多的数据表格,采用手工复制黏贴的方式显然并不可取。那么如何才能高效提取出pdf文件中的表格数据呢?
Python提供了许多可用于pdf表格识别的库,如camelot、tabula、pdfplumber等。综合来看,pdfplumber库的性能较佳,能提取出完整、且相对规范的表格。因此,本推文也主要介绍pdfplumber库在pdf表格提取中的作用。
作为一个强大的pdf文件解析工具,pdfplumber库可迅速将pdf文档转换为易于处理的txt文档,并输出pdf文档的字符、页面、页码等信息,还可进行页面可视化操作。使用pdfplumber库前需先安装,即在cmd命令行中输入:
pip install pdfplumber
pdfplumber库提供了两种pdf表格提取函数,分别为.extract_tables( )及.extract_table( ),两种函数提取结果存在差异。为进行演示,我们网站上下载了一份短期融资券主体信用评级报告,为pdf格式。任意选取某一表格,其界面如下:
接下来,我们简要分析两种提取模式下的结果差异。
(1).extract_tables( )
可输出页面中所有表格,并返回一个嵌套列表,其结构层次为table→row→cell。此时,页面上的整个表格被放入一个大列表中,原表格中的各行组成该大列表中的各个子列表。若需输出单个外层列表元素,得到的便是由原表格同一行元素构成的列表。例如,我们执行如下程序:
输出结果:
(2).extract_table( )
返回多个独立列表,其结构层次为row→cell。若页面中存在多个行数相同的表格,则默认输出顶部表格;否则,仅输出行数最多的一个表格。此时,表格的每一行都作为一个单独的列表,列表中每个元素即为原表格的各个单元格内容。若需输出某个元素,得到的便是具体的数值或字符串。如下:
输出结果:
在此基础上,我们详细介绍如何从pdf文件中提取表格数据。其中一种思路便是将提取出的列表视为一个字符串,结合Python的正则表达式re模块进行字符串处理后,将其保存为以标准英文逗号分隔、可被Excel识别的csv格式文件,即进行如下操作:
输出结果:
尽管能获得完整的表格数据,但这种方法相对不易理解,且在处理结构不规则的表格时容易出错。由于通过pdfplumber库提取出的表格数据为整齐的列表结构,且含有数字、字符串等数据类型。因此,我们可调用pandas库下的DataFrame( )函数,将列表转换为可直接输出至Excel的DataFrame数据结构。DataFrame的基本构造函数如下:
DataFrame([data,index, columns])
三个参数data、index和columns分别代表创建对象、行索引和列索引。DataFrame类型可由二维ndarray对象、列表、字典、元组等创建。本推文中的data即指整个pdf表格,提取程序如下:
其中,table[1:]表示选定整个表格进行DataFrame对象创建,columns=table[0]表示将表格第一行元素作为列变量名,且不创建行索引。输出Excel表格如下:
通过以上简单程序,我们便提取出了完整的pdf表格。但需注意的是,面对不规则的表格数据提取,创建DataFrame对象的方法依然可能出错,在实际操作中还需进行核对。
关于我们
微信公众号“爬虫俱乐部”分享实用的stata命令,欢迎转载、打赏。爬虫俱乐部是由李春涛教授领导下的研究生及本科生组成的大数据分析和数据挖掘团队。
投稿要求:
1)必须原创,禁止抄袭;
2)必须准确,详细,有例子,有截图;
H. python怎样做html的表格
现要实现python制作html格式的表格,利用Python对字符串str.format()格式化操作进行处理,在日常对CVS格式文件处理过程当中,经常会将CVS格式文件进行转换,在正式场合是程序读取CVS文件进行转换并输出到html格式的文件当中,但现在只是实现一下转换的过程,需要输入以逗号分隔的数据。
在设计程式的时候,需要先定义一下整个代码的框架,首先我们要定义一个主函数main(),虽然Python没有规定入口函数,一般在正式的开发中都设计了一个main()函数作为程序的入口函数,或许这是一种规范吧。然后我们在定义一个打印表头的方法print_head(),并在主函数里进行调用。再定义一个打印表尾的方法print_end(),也在主函数中进行调用。定义print_line()为打印表格行,定义extract_field()处理cvs行数据转换为list集合数据。最后再定义一个处理特殊符号的方法escape_html(),因为在html代码中为了避免与它的标签冲突,特要进行特殊符号的转换,如&-->&
还有就是对长度过长的数据要进行处理并用...代替
源代码:
#Author Tandaly
#Date 2013-04-09
#File Csv2html.py
#主函数
def main():
print_head()
maxWidth = 100
count = 0
while True:
try:
line = str(input())
if count == 0:
color = "lightgreen"
elif count%2 == 0:
color = "white"
else:
color = "lightyellow"
print_line(line, color, maxWidth)
count += 1
except EOFError:
break
print_end()
#打印表格头
def print_head():
print("")
#打印表行
def print_line(line, color, maxWidth):
tr = "".format(color)
tds = ""
if line is not None and len(line) > 0:
fields = axtract_fields(line)
for filed in fields:
td = "{0}".format(filed if (len(str(filed)) <= maxWidth) else
(str(filed)[:100] + "..."))
tds += td
tr += "{0}
".format(tds)
print(tr)
#打印表格尾
def print_end():
print("")
#抽取行值
def axtract_fields(line):
line = escape_html(line)
fields = []
field = ""
quote = None
for c in line:
if c in "\"":
if quote is None:
quote = c
elif quote == c:
quote = None
continue
if quote is not None:
field += c
continue
if c in ",":
fields.append(field)
field = ""
else:
field += c
if len(field) > 0:
fields.append(field)
return fields
#处理特殊符号
def escape_html(text):
text = text.replace("&", "&")
text = text.replace(">", ">")
text = text.replace("<", "<")
return text
#程序入口
if __name__ == "__main__":
main()
运行结果:
>>>
"nihao","wo"
nihaowo
"sss","tandaly"
...tandaly
"lkkkkkkkkkkksdfssssssssssssss",
34
...34
I. Python处理Excel效率高十倍(下篇)通篇硬干货,再也不用加班啦
《用Python处理Excel表格》下篇来啦!
身为工作党或学生党的你,平日里肯定少不了与Excel表格打交道的机会。当你用Excel处理较多数据时,还在使用最原始的人工操作吗?现在教你如何用Python处理Excel,从此处理表格再也不加班,时间缩短数十倍!
上篇我们进行了一些事前准备,目的是用Python提取Excel表中的数据。而这一篇便是在获取数据的基础上,对Excel表格的实操处理。
第9行代码用来指定创建的excel的活动表的名字:
·不写第9行,默认创建sheet
·写了第9行,创建指定名字的sheet表
第9行代码,通过给单元格重新赋值,来修改单元格的值
第9行代码的另一种写法sheet['B1'].value = 'age'
第10行代码,保存时如果使用原来的(第7行)名字,就直接保存;如果使用了别的名字,就会另存为一个新文件
插入有效数据
使用append()方法,在原来数据的后面,按行插入数据
·insert_rows(idx=数字编号, amount=要插入的行数),插入的行数是在idx行数的下方插入
·insert_cols(idx=数字编号, amount=要插入的列数),插入的位置是在idx列数的左侧插入
·delete_rows(idx=数字编号, amount=要删除的行数)
·delete_cols(idx=数字编号, amount=要删除的列数)
move_range(“数据区域”,rows=,cols=):正整数为向下或向右、负整数为向左或向上
举个例子:
openpyxl.styles.Font(name=字体名称,size=字体大小,bold=是否加粗,italic=是否斜体,color=字体颜色)
其中,字体颜色中的color是RGB的16进制表示
再者,可以使用for循环,修改多行多列的数据,在这里介绍了获取的方法
Alignment(horizontal=水平对齐模式,vertical=垂直对齐模式,text_rotation=旋转角度,wrap_text=是否自动换行)
水平对齐:‘distributed’,‘justify’,‘center’,‘left’, ‘centerContinuous’,'right,‘general’
垂直对齐:‘bottom’,‘distributed’,‘justify’,‘center’,‘top’
当然,你仍旧可以调用for循环来实现对多行多列的操作
设置行列的宽高:
·row_dimensions[行编号].height = 行高
·column_dimensions[列编号].width = 列宽
合并单元格有下面两种方法,需要注意的是,如果要合并的格子中有数据,即便python没有报错,Excel打开的时候也会报错。
merge_cells(待合并的格子编号)
merge_cells(start_row=起始行号,start_column=起始列号,end_row=结束行号,end_column=结束列号)
拆分单元格的方法同上
unmerge_cells(待合并的格子编号)
unmerge_cells(start_row=起始行号,start_column=起始列号,end_row=结束行号,end_column=结束列号)
create_sheet(“新的sheet名”):创建一个新的sheet表
第11行,使用title修改sheet表的名字
remove(“sheet名”):删除某个sheet表
要删除某sheet表,需要激活这个sheet表,即:将其作为活动表(关于活动表的定义请看前面文章开头写的有)下面8~11行代码展示了原始活动表与手动更换活动表,第13行代码删掉活动表
背景知识
numpy与pandas
NumPy是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库;pandas 是基于NumPy 的一种工具,该工具是为解决数据分析任务而创建的,我们需要利用Pandas进行Excel的合并
1.下面的代码生成了一个5行3列的包含15个字符的嵌套列表
(注意,第4行代码:15是等于35的,如果是15对应43,或者16对应5*3都会报错)
(注意,第5行代码,虽然5行3列是15个数据,但是可以指定数据从1开头,到16结束)
2.添加表头
使用pandas库的DataFrame来添加表头。关于打印的结果,把最左侧的一列去掉之后会发现结果很和谐,这是因为最左侧的一列代表行号。此时xx变量的类型是
xlsxwriter模块一般是和xlrd模块搭配使用的,
xlsxwriter:负责写入数据,
xlrd:负责读取数据。
1.创建一个工作簿
2.创建sheet表
3.写入数据
J. 如何用Python将表格一整行条件格式化突出显示特定值
实现思路其它比较简单
用python打开你的excel文件,
循环遍历每个单元各的内容。
检查这个单元格中的值是否符合你的条件。
如符合条件,单元格的背景色设为淡红色。
不符合条件,单无格的背景色设为淡绿色。
如有其它问题还可以追问。