① python的类和对象入门
本文来说说Python中的类与对象,Python这门语言是无处不对象,如果你曾浅要了解过Python,你应该听过Python是一种面向对象编程的语言,所以你经常可能会看到面向“对象”编程这类段子,而面向对象编程的语言都会有三大特征:封装、继承、多态。
我们平时接触到的很多函数、方法的操作都具有这些性质,我们只是会用,但还没有去深入了解它的本质,下面就介绍一下关于类和对象的相关知识。
封装这个概念应该并不陌生,比如我们把一些数据封装成一个列表,这就属于数据封装,我们也可以将一些代码语句封装成一个函数方便调用,这就是代码的封装,我们也可以将数据和代码封装在一起。用术语表示的话,就是可以将属性和方法进行封装,从而得到对象。
首先我们可以定义一个类,这个类中有属性和方法,但有的伙伴会比较好奇,属性和方法不是会封装成对象嘛,为什么又变成类了?举个例子,类就好比是一个毛坯房,而对象是在毛坯房的基础上改造成的精装房。
在类定义完成时就创建了一个类对象,它是对类定义创建的命名空间进行了一个包装。类对象支持两种操作:属性引用和实例化。
属性引用的语法就是一般的标准语法:obj.name。比如XiaoMing.height和XiaoMing.run就是属性引用,前者会返回一条数据,而后者会返回一个方法对象。
这里也支持对类属性进行赋值操作,比如为类中的weight属性赋予一个新值。
而类的实例化可以将类对象看作成一个无参函数的赋值给一个局部变量,如下:
ming就是由类对象实例化后创建的一个实例对象,通过实例对象也可以调用类中的属性和方法。
类在实例化过程中并不都是像上面例子一样简单的,一般类都会倾向将实例对象创建为有初始状态的,所以在类中可能会定义一个__init__的魔法方法,这个方法就可以帮助接收、传入参数。
而一个类如果定义了__init__方法,那么在类对象实例化的过程中就会自动为新创建的实例化对象调用__init__方法,请看下面这个例子。
可以看到在__init__()中传入了参数x和y,然后在print_coor中需要接收参数x和y,接下来通过实例化这个类对象,验证一下参数是否能通过__init__()传递到类的实例化操作中。
所谓继承就是一个新类在另一个类的基础上构建而成,这个新类被称作子类或者派生类,而另一个类被称作父类、基类或者超类,而子类会继承父类中已有的一些属性和方法。
比如上面这个例子,我并没有将list_定义成一个列表,但它却能调用append方法。原因是类Mylist继承于list这个基类,而list_又是Mylist的一个实例化对象,所以list_也会拥有父类list拥有的方法。当然可以通过自定义类的形式实现两个类之间的继承关系,我们定义Parent和Child两个类,Child中没有任何属性和方法,只是继承于父类Parent。
当子类中定义了与父类中同名的方法或者属性,则会自动覆盖父类对应的方法或属性,还是用上面这个例子实现一下,方便理解。
可以看到子类Child中多了一个和父类Parent同名的方法,再实例化子类并调用这个方法时,最后调用的是子类中的方法。Python中继承也允许多重继承,也就是说一个子类可以继承多个父类中的属性和方法,但是这类操作会导致代码混乱,所以大多数情况下不推荐使用,这里就不过多介绍了。
多态比较简单,比如定义两个类,这两个类没有任何关系,只是两个类中有同名的方法,而当两个类的实例对象分别调用这个方法时,不同类的实例对象调用的方法也是不同的。
上面这两个类中都有introce方法,我们可以实例化一下两个类,利用实例对象调用这个方法实现一下多态。
判断一个类是否是另一个类的子类,如果是则返回True,反之则返回False。
需要注意的有两点:
判断一个对象是否为一个类的实例对象,如果是则返回True,反之则返回False。
需要注意的有两点:
判断一个实例对象中是否包含一个属性,如果是则返回True,反之则返回False。
需要注意的是第二个参数name必须为字符串形式传入,如果不是则会返回False。
② python中的元类是什么,它们用于什么
元类是类的类。类定义类的实例(即对象)的行为,而元类定义类的行为。类是元类的实例。
虽然在Python中你可以对元类使用任意可调用对象(例如Jerub演示),但是更好的方法是使其成为实际的类。type是Python中常见的元类。type它本身是一个类,并且是它自己的类型。你将无法type纯粹使用Python 重新创建类似的东西,但是Python有点作弊。要在Python中创建自己的元类,你实际上只想将其子类化type。
元类最常用作类工厂。当你通过调用类创建对象时,Python通过调用元类来创建一个新类(执行“ class”语句时)。因此,与普通方法__init__和__new__方法结合使用,元类可以让你在创建类时做“额外的事情”,例如在某些注册表中注册新类或将其完全替换为其他类。
class执行该语句时,Python首先将class语句的主体作为普通代码块执行。生成的名称空间(字典)保留了将来类的属性。通过查看待定类的基类(继承了元类),待定类的__metaclass__属性(如果有)或__metaclass__全局变量来确定元类。然后使用该类的名称,基数和属性调用该元类以实例化它。但是,元类实际上定义了类的类型,而不仅仅是它的工厂,因此你可以使用它们做更多的事情。例如,你可以在元类上定义常规方法。这些元类方法就像类方法,因为它们可以在没有实例的情况下在类上调用,但是它们也不像类方法,因为它们不能在类的实例上被调用。type.__subclasses__()是type元类上方法的示例。你还可以定义正常的“魔力”的方法,如__add__,__iter__和__getattr__,执行或如何变化的类的行为。
③ python是什么样的编程语言
Python是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言;
Python的设计具有很强的可读性,相比其他语言经常使用英文关键字,其他语言的一些标点符号,它具有比其他语言更有特色语法结构;
Python是一种解释型语言,意味着开发过程中没有了编译这个环节,类似于PHP和Perl语言;
Python是交互式语言,意味着你可以在一个Python提示符>>>后直接执行代码;
Python是面向对象语言,意味着Python支持面向对象的风格或代码封装在对象的编程技术;
Python是初学者首选的语言,Python对初级程序员而言,是一种伟大的编程语言,它支持广泛的应用程序开发,从简单的文字处理到WWW浏览器再到游戏,无所不能。
④ python数据统计分析
1. 常用函数库
scipy包中的stats模块和statsmodels包是python常用的数据分析工具,scipy.stats以前有一个models子模块,后来被移除了。这个模块被重写并成为了现在独立的statsmodels包。
scipy的stats包含一些比较基本的工具,比如:t检验,正态性检验,卡方检验之类,statsmodels提供了更为系统的统计模型,包括线性模型,时序分析,还包含数据集,做图工具等等。
2. 小样本数据的正态性检验
(1) 用途
夏皮罗维尔克检验法 (Shapiro-Wilk) 用于检验参数提供的一组小样本数据线是否符合正态分布,统计量越大则表示数据越符合正态分布,但是在非正态分布的小样本数据中也经常会出现较大的W值。需要查表来估计其概率。由于原假设是其符合正态分布,所以当P值小于指定显着水平时表示其不符合正态分布。
正态性检验是数据分析的第一步,数据是否符合正态性决定了后续使用不同的分析和预测方法,当数据不符合正态性分布时,我们可以通过不同的转换方法把非正太态数据转换成正态分布后再使用相应的统计方法进行下一步操作。
(2) 示例
(3) 结果分析
返回结果 p-value=0.029035290703177452,比指定的显着水平(一般为5%)小,则拒绝假设:x不服从正态分布。
3. 检验样本是否服务某一分布
(1) 用途
科尔莫戈罗夫检验(Kolmogorov-Smirnov test),检验样本数据是否服从某一分布,仅适用于连续分布的检验。下例中用它检验正态分布。
(2) 示例
(3) 结果分析
生成300个服从N(0,1)标准正态分布的随机数,在使用k-s检验该数据是否服从正态分布,提出假设:x从正态分布。最终返回的结果,p-value=0.9260909172362317,比指定的显着水平(一般为5%)大,则我们不能拒绝假设:x服从正态分布。这并不是说x服从正态分布一定是正确的,而是说没有充分的证据证明x不服从正态分布。因此我们的假设被接受,认为x服从正态分布。如果p-value小于我们指定的显着性水平,则我们可以肯定地拒绝提出的假设,认为x肯定不服从正态分布,这个拒绝是绝对正确的。
4.方差齐性检验
(1) 用途
方差反映了一组数据与其平均值的偏离程度,方差齐性检验用以检验两组或多组数据与其平均值偏离程度是否存在差异,也是很多检验和算法的先决条件。
(2) 示例
(3) 结果分析
返回结果 p-value=0.19337536323599344, 比指定的显着水平(假设为5%)大,认为两组数据具有方差齐性。
5. 图形描述相关性
(1) 用途
最常用的两变量相关性分析,是用作图描述相关性,图的横轴是一个变量,纵轴是另一变量,画散点图,从图中可以直观地看到相关性的方向和强弱,线性正相关一般形成由左下到右上的图形;负面相关则是从左上到右下的图形,还有一些非线性相关也能从图中观察到。
(2) 示例
(3) 结果分析
从图中可以看到明显的正相关趋势。
6. 正态资料的相关分析
(1) 用途
皮尔森相关系数(Pearson correlation coefficient)是反应两变量之间线性相关程度的统计量,用它来分析正态分布的两个连续型变量之间的相关性。常用于分析自变量之间,以及自变量和因变量之间的相关性。
(2) 示例
(3) 结果分析
返回结果的第一个值为相关系数表示线性相关程度,其取值范围在[-1,1],绝对值越接近1,说明两个变量的相关性越强,绝对值越接近0说明两个变量的相关性越差。当两个变量完全不相关时相关系数为0。第二个值为p-value,统计学上,一般当p-value<0.05时,可以认为两变量存在相关性。
7. 非正态资料的相关分析
(1) 用途
斯皮尔曼等级相关系数(Spearman’s correlation coefficient for ranked data ),它主要用于评价顺序变量间的线性相关关系,在计算过程中,只考虑变量值的顺序(rank, 值或称等级),而不考虑变量值的大小。常用于计算类型变量的相关性。
(2) 示例
(3) 结果分析
返回结果的第一个值为相关系数表示线性相关程度,本例中correlation趋近于1表示正相关。第二个值为p-value,p-value越小,表示相关程度越显着。
8. 单样本T检验
(1) 用途
单样本T检验,用于检验数据是否来自一致均值的总体,T检验主要是以均值为核心的检验。注意以下几种T检验都是双侧T检验。
(2) 示例
(3) 结果分析
本例中生成了2列100行的数组,ttest_1samp的第二个参数是分别对两列估计的均值,p-value返回结果,第一列1.47820719e-06比指定的显着水平(一般为5%)小,认为差异显着,拒绝假设;第二列2.83088106e-01大于指定显着水平,不能拒绝假设:服从正态分布。
9. 两独立样本T检验
(1) 用途
由于比较两组数据是否来自于同一正态分布的总体。注意:如果要比较的两组数据不满足方差齐性, 需要在ttest_ind()函数中添加参数equal_var = False。
(2) 示例
(3) 结果分析
返回结果的第一个值为统计量,第二个值为p-value,pvalue=0.19313343989106416,比指定的显着水平(一般为5%)大,不能拒绝假设,两组数据来自于同一总结,两组数据之间无差异。
10. 配对样本T检验
(1) 用途
配对样本T检验可视为单样本T检验的扩展,检验的对象由一群来自正态分布独立样本更改为二群配对样本观测值之差。它常用于比较同一受试对象处理的前后差异,或者按照某一条件进行两两配对分别给与不同处理的受试对象之间是否存在差异。
(2) 示例
(3) 结果分析
返回结果的第一个值为统计量,第二个值为p-value,pvalue=0.80964043445811551,比指定的显着水平(一般为5%)大,不能拒绝假设。
11. 单因素方差分析
(1) 用途
方差分析(Analysis of Variance,简称ANOVA),又称F检验,用于两个及两个以上样本均数差别的显着性检验。方差分析主要是考虑各组之间的平均数差别。
单因素方差分析(One-wayAnova),是检验由单一因素影响的多组样本某因变量的均值是否有显着差异。
当因变量Y是数值型,自变量X是分类值,通常的做法是按X的类别把实例成分几组,分析Y值在X的不同分组中是否存在差异。
(2) 示例
(3) 结果分析
返回结果的第一个值为统计量,它由组间差异除以组间差异得到,上例中组间差异很大,第二个返回值p-value=6.2231520821576832e-19小于边界值(一般为0.05),拒绝原假设, 即认为以上三组数据存在统计学差异,并不能判断是哪两组之间存在差异 。只有两组数据时,效果同 stats.levene 一样。
12. 多因素方差分析
(1) 用途
当有两个或者两个以上自变量对因变量产生影响时,可以用多因素方差分析的方法来进行分析。它不仅要考虑每个因素的主效应,还要考虑因素之间的交互效应。
(2) 示例
(3) 结果分析
上述程序定义了公式,公式中,"~"用于隔离因变量和自变量,”+“用于分隔各个自变量, ":"表示两个自变量交互影响。从返回结果的P值可以看出,X1和X2的值组间差异不大,而组合后的T:G的组间有明显差异。
13. 卡方检验
(1) 用途
上面介绍的T检验是参数检验,卡方检验是一种非参数检验方法。相对来说,非参数检验对数据分布的要求比较宽松,并且也不要求太大数据量。卡方检验是一种对计数资料的假设检验方法,主要是比较理论频数和实际频数的吻合程度。常用于特征选择,比如,检验男人和女人在是否患有高血压上有无区别,如果有区别,则说明性别与是否患有高血压有关,在后续分析时就需要把性别这个分类变量放入模型训练。
基本数据有R行C列, 故通称RC列联表(contingency table), 简称RC表,它是观测数据按两个或更多属性(定性变量)分类时所列出的频数表。
(2) 示例
(3) 结果分析
卡方检验函数的参数是列联表中的频数,返回结果第一个值为统计量值,第二个结果为p-value值,p-value=0.54543425102570975,比指定的显着水平(一般5%)大,不能拒绝原假设,即相关性不显着。第三个结果是自由度,第四个结果的数组是列联表的期望值分布。
14. 单变量统计分析
(1) 用途
单变量统计描述是数据分析中最简单的形式,其中被分析的数据只包含一个变量,不处理原因或关系。单变量分析的主要目的是通过对数据的统计描述了解当前数据的基本情况,并找出数据的分布模型。
单变量数据统计描述从集中趋势上看,指标有:均值,中位数,分位数,众数;从离散程度上看,指标有:极差、四分位数、方差、标准差、协方差、变异系数,从分布上看,有偏度,峰度等。需要考虑的还有极大值,极小值(数值型变量)和频数,构成比(分类或等级变量)。
此外,还可以用统计图直观展示数据分布特征,如:柱状图、正方图、箱式图、频率多边形和饼状图。
15. 多元线性回归
(1) 用途
多元线性回归模型(multivariable linear regression model ),因变量Y(计量资料)往往受到多个变量X的影响,多元线性回归模型用于计算各个自变量对因变量的影响程度,可以认为是对多维空间中的点做线性拟合。
(2) 示例
(3) 结果分析
直接通过返回结果中各变量的P值与0.05比较,来判定对应的解释变量的显着性,P<0.05则认为自变量具有统计学意义,从上例中可以看到收入INCOME最有显着性。
16. 逻辑回归
(1) 用途
当因变量Y为2分类变量(或多分类变量时)可以用相应的logistic回归分析各个自变量对因变量的影响程度。
(2) 示例
(3) 结果分析
直接通过返回结果中各变量的P值与0.05比较,来判定对应的解释变量的显着性,P<0.05则认为自变量具有统计学意义。
⑤ python算法有哪些
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
一个算法应该具有以下七个重要的特征:
①有穷性(Finiteness):算法的有穷性是指算法必须能在执行有限个步骤之后终止;
②确切性(Definiteness):算法的每一步骤必须有确切的定义;
③输入项(Input):一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输 入是指算法本身定出了初始条件;
④输出项(Output):一个算法有一个或多个输出,以反映对输入数据加工后的结果。没 有输出的算法是毫无意义的;
⑤可行性(Effectiveness):算法中执行的任何计算步骤都是可以被分解为基本的可执行 的操作步,即每个计算步都可以在有限时间内完成(也称之为有效性);
⑥高效性(High efficiency):执行速度快,占用资源少;
⑦健壮性(Robustness):对数据响应正确。
相关推荐:《Python基础教程》
五种常见的Python算法:
1、选择排序
2、快速排序
3、二分查找
4、广度优先搜索
5、贪婪算法
⑥ 基于python的prosper借贷平台之数据分析
项目介绍:
p2p 借贷业务具有门槛低,渠道成本低的特性,风险防控对于出借企业来说非常重要。本项目需要
从大量借贷者的数据集中分析出容易违约和不容易违约的人群画像特征,以给业务做贷前决策使
用。同时使用机器学习算法,实现自动识别风险人群(精准率为 89.86%),加快人工审查效率。
项目具体内容:
1、使用 python pandas 工具进行数据清洗、缺失值、异常值处理以及特征指标筛选。
2、使用 python matplotlib 可视化工具进行探索式数据分析,展示用户关键特征如月收入、信用卡
透支情况对于违约率的影响情况。
3、使用机器学习随机森林进行建模分析,使用学习曲线、网格搜索、交叉验证,最终得到了一个评
分为 84.9%、精准率为 89.86%、召回率为 80.70%、auc 面积为 0.9337 数据预测模型。
本次数据训练使用的模型是随机森林分类算法,通过对预处理过的数据集进行训练,使用学习曲线、网格搜索、交叉验证。最终得到了一个评分为84.9%、精准率为89.86%、召回率为80.70%、 auc面积为0.9337 数据预测模型。
数据预处理的基本流程与思路:
1、首先要明确有多少特征,哪些是连续的,哪些是类别的。
2、检查有没有缺失值,对确实的特征选择恰当方式进行弥补,使数据完整。
3、对连续的数值型特征进行标准化,使得均值为0,方差为1。
4、对类别型的特征进行one-hot编码。
5、将需要转换成类别型数据的连续型数据进行二值化。
6、为防止过拟合或者其他原因,选择是否要将数据进行正则化。
7、在对数据进行初探之后发现效果不佳,可以尝试使用多项式方法,寻找非线性的关系。
8、根据实际问题分析是否需要对特征进行相应的函数转换。
导入数据集,并查看数据基本情况。可以看到prosper原始数据量比较庞大,一个有113937个样本,80个特征列,1个标签列。
1.1、特征较多,先共删减一部分无用的特征。
1.2 查看数据缺失情况,可以看到有40个特征是存在数据缺失的,缺失率从0.000219-0.882909不等。下面处理缺失数据。
1.2.1 删除缺失值比较多的特征
下面两个特征缺失率太高,且与我们要分析的相关性不大,直接删除掉。
1.2.2 获取数据类型是分类变量的所有特征,并使用unknown进行填充
1.2.3 特殊变量使用计算公式进行填充
1.2.4 去掉意义重复列
1.2.5 删除缺失率比较少的特征的缺失数据行
处理完缺失数据后,样本量为106290,特征量为55
1.3 数据过滤
1.3.1 从2009年7月开始,Prosper调整了对客户的评估方式,此次我们只对2009-07-01后的贷款进行分析。
过滤完数据后,样本量变为82931,特征量为54
2.1单变量分析
0为未违约人数,1位违约人数,可以看到2009.07以后,违约率为22.90%
2.1.1不同地区贷款数量分布
从图中可以看到加利福尼亚州贷款数量远比其他州的数量高。由于prosper总部就位于加利福尼亚州,这与实际情况一致。其他排名靠前的分别是得克萨斯、纽约、佛罗里达、伊利诺伊,贷款数据均超过了5000条。根据2015年美国各州的GDP排名,这5个州刚好排名前五,而且顺序也是一致的。说明Prosper平台的用户主要分布在美国经济发达的地区。
2.1.2 贷款人收入情况分布
年薪在25000美金以上在美国属于技术性白领或者有一定学历的职员,50000美金已经是近金领阶层,比如:大学教授,医生等。从图中可以看出Prosper平台用户的收入水平都相对较高,有利于用户还款,利于平台和投资者的风险控制。
2.1.3贷款人职业分布
从图中可以看出,除了不愿意透露具体职业的人,大部分用户是教授、程序员、企业高管等具有一定社会地位的人,这部分人受过高等教育,信用有一定保障。另外,这与之前看到的收入情况相符。
2.1.4贷款人债务收入比分布
大部分用户的债务收入比在0.2左右,超过0.5的占很少部分。说明Prosper平台用户的还款能力还是比较乐观的
2.1.5 贷款者信用卡使用情况
BankcardUtilization代表的是信用卡使用金额和信用卡额度的比值,可以体现用户的资金需求。Prosper用户多是0.5~1之间,说明用户每个月还有信用卡要还,降低了其还款能力。
2.2 相关的关键因素对贷款违约率的影响
2.2.1借贷人收入IncomeRange对违约率的影响
从图中可以看出:
1.一般来说收入越高违约率越低
2.贷款的人员主要集中在中等收入群体
2.2.2 债务收入比DebtToIncomeRatio对违约率的影响
从上图可以看出:
1.债务收入比小于0.6时,违约数明显小于未违约数,
2.当债务收入比大于0.6时,两者的差距不是很明显甚至违约数大于未违约数,说明了债务收入比越大的人越容易违约
2.2.3 借款人BankcardUtilization对违约率的影响
1.总的来说,随着信用卡的透支比例越来越高,违约率也越来越高
2.SuperUse的违约率到了37.5%,这部分人群需要严格了监控,No Use人群也有31%的违约率,当初将信用卡透支比例为0和NA的数据都归类为No Use,显然没有这么简单,应该是大部分人群的NA值是为了隐藏自己的高透支比例而填写的
2.2.4 消费信用分CreditScoreRange对违约率的影响
从上图可以看出:
1.随着信用分数CreditScore的上升,它的违约率在下降
2.大部分贷款者的信用分为650-800,违约率在0.06-0.02
2.2.5 过去7年借款人违约次数DelinquenciesLast7Years对违约率的影响
过去七年违约次数(DelinquenciesLast7Years)能够衡量一个人在过去七年中征信情况,违约一次或以上的人在借款时违约概率更大。
从上图可以看出:
1.总体来说过去7年违约次数越多,违约率越高
2.过去7年未违约的人数相对来说比其他违约的人数高很多,具体看下面的分析
3.1 数据转化
3.1.1类变量进行哑变量化
样本量变为82931,特征量为127
3.1.2 标签变量进行二分类
已完成贷款的样本量变为26365,特征量为127
未违约率为:0.7709084012895885;违约率为0.22909159871041151
3.2 至此,数据预处理的工作就告一段落,保存预处理好的数据。
导入经过预处理的prosper借贷数据集
4.1 手工挑选特征查看一下建模效果
准确率为0.7695
4.2 使用模型自己选取特征
准确率为0.7780
4.3 使用学习曲线选取最优n_estimators
在0-200/20内学习,得到最优n_estimators=161,score = 0.8508
在151-171/20内学习,得到最优n_estimators=163,score = 0.8511
4.4 使用网格搜索调其他参数
在0-60/5内学习,得到最优max_depth=41
在0-60/5内学习,得到最优max_features=16
这里由于比较耗时,没有进一步细化选择更高的参数
4.4 最终模型效果
最终准确率 0.8490528905289052
混淆矩阵 :
[[5552 554]
[1175 4914]]
精准率 : [0.82533076 0.89868325]
召回率 : [0.90926957 0.80702907]
roc和auc面积为0.9337
4.5 查看各特征的重要性
4.6 数据预测
预测的违约率0.0427
⑦ Python 数据可视化:分类特征统计图
上一课已经体验到了 Seaborn 相对 Matplotlib 的优势,本课将要介绍的是 Seaborn 对分类数据的统计,也是它的长项。
针对分类数据的统计图,可以使用 sns.catplot 绘制,其完整参数如下:
本课使用演绎的方式来学习,首先理解这个函数的基本使用方法,重点是常用参数的含义。
其他的参数,根据名称也能基本理解。
下面就依据 kind 参数的不同取值,分门别类地介绍各种不同类型的分类统计图。
读入数据集:
然后用这个数据集制图,看看效果:
输出结果:
毫无疑问,这里绘制的是散点图。但是,该散点图的横坐标是分类特征 time 中的三个值,并且用 hue='kind' 又将分类特征插入到图像中,即用不同颜色的的点代表又一个分类特征 kind 的值,最终得到这些类别组合下每个记录中的 pulse 特征值,并以上述图示表示出来。也可以理解为,x='time', hue='kind' 引入了图中的两个特征维度。
语句 ① 中,就没有特别声明参数 kind 的值,此时是使用默认值 'strip'。
与 ① 等效的还有另外一个对应函数 sns.stripplot。
输出结果:
② 与 ① 的效果一样。
不过,在 sns.catplot 中的两个参数 row、col,在类似 sns.stripplot 这样的专有函数中是没有的。因此,下面的图,只有用 sns.catplot 才能简洁直观。
输出结果:
不过,如果换一个叫角度来说,类似 sns.stripplot 这样的专有函数,表达简单,参数与 sns.catplot 相比,有所精简,使用起来更方便。
仔细比较,sns.catplot 和 sns.stripplot 两者还是稍有区别的,虽然在一般情况下两者是通用的。
因此,不要追求某一个是万能的,各有各的用途,存在即合理。
不过,下面的声明请注意: 如果没有非常的必要,比如绘制分区图,在本课中后续都演示如何使用专有名称的函数。
前面已经初步解释了这个函数,为了格式完整,这里再重复一下,即 sns.catplot 中参数 kind='strip'。
如果非要将此函数翻译为汉语,可以称之为“条状散点图”。以分类特征为一坐标轴,在另外一个坐标轴上,根据分类特征,将该分类特征数据所在记录中的连续值沿坐标轴描点。
从语句 ② 的结果图中可以看到,这些点虽然纵轴的数值有相同的,但是没有将它们重叠。因此,我们看到的好像是“一束”散点,实际上,所有点的横坐标都应该是相应特征分类数据,也不要把分类特征的值理解为一个范围,分散开仅仅是为了图示的视觉需要。
输出结果:
④ 相对 ② 的图示,在于此时同一纵轴值的都重合了——本来它们的横轴值都是一样的。实现此效果的参数是 jitter=0,它可以表示点的“振动”,如果默认或者 jitter=True,意味着允许描点在某个范围振动——语句 ② 的效果;还可设置为某个 0 到 1 的浮点,表示许可振动的幅度。请对比下面的操作。
输出结果:
语句 ② 中使用 hue='kind' 参数向图中提供了另外一个分类特征,但是,如果感觉图有点乱,还可以这样做:
输出结果:
dodge=True 的作用就在于将 hue='kind' 所引入的特征数据分开,相对 ② 的效果有很大差异。
并且,在 ⑤ 中还使用了 paletter='Set2' 设置了色彩方案。
sns.stripplot 函数中的其他有关参数,请读者使用帮助文档了解。
此函数即 sns.catplot 的参数 kind='swarm'。
输出结果:
再绘制一张简单的图,一遍研究这种图示的本质。
输出结果:
此图只使用了一个特征的数据,简化表象,才能探究 sns.swarmplot 的本质。它同样是将该特征中的数据,依据其他特征的连续值在图中描点,并且所有点在默认情况下不彼此重叠——这方面与 sns.stripplot 一样。但是,与之不同的是,这些点不是随机分布的,它们经过调整之后,均匀对称分布在分类特征数值所在直线的两侧,这样能很好地表示数据的分布特点。但是,这种方式不适合“大数据”。
sns.swarmplot 的参数似乎也没有什么太特殊的。下面使用几个,熟悉一番基本操作。
在分类维度上还可以再引入一个维度,用不同颜色的点表示另外一种类别,即使用 hue 参数来实现。
输出结果:
这里用 hue = 'smoker' 参数又引入了一个分类特征,在图中用不同颜色来区分。
如果觉得会 smoker 特征的值都混在一起有点乱,还可以使用下面方式把他们分开——老调重弹。
输出结果:
生成此效果的参数就是 dodge=True,它的作用就是当 hue 参数设置了特征之后,将 hue 的特征数据进行分类。
sns.catplot 函数的参数 kind 可以有三个值,都是用于绘制分类的分布图:
下面依次对这三个专有函数进行阐述。
⑧ python数据分析与应用-Python数据分析与应用 pdf 内部全资料版
给大家带来的一篇关于Python数据相关的电子书资源,介绍了关于Python方面的内容,本书是由人民邮电出版社出版,格式为PDF,资源大小281 MB,黄红梅 张良均编写,目前豆瓣、亚马逊、当当、京东等电子书综合评分为:7.8。
内容介绍
目录
第1章Python数据分析概述1
任务1.1认识数据分析1
1.1.1掌握数据分析的概念2
1.1.2掌握数据分析的流程2
1.1.3了解数据分析应用场景4
任务1.2熟悉Python数据分析的工具5
1.2.1了解数据分析常用工具6
1.2.2了解Python数据分析的优势7
1.2.3了解Python数据分析常用类库7
任务1.3安装Python的Anaconda发行版9
1.3.1了解Python的Anaconda发行版9
1.3.2在Windows系统中安装Anaconda9
1.3.3在Linux系统中安装Anaconda12
任务1.4掌握Jupyter Notebook常用功能14
1.4.1掌握Jupyter Notebook的基本功能14
1.4.2掌握Jupyter Notebook的高 级功能16
小结19
课后习题19
第2章NumPy数值计算基础21
任务2.1掌握NumPy数组对象ndarray21
2.1.1创建数组对象21
2.1.2生成随机数27
2.1.3通过索引访问数组29
2.1.4变换数组的形态31
任务2.2掌握NumPy矩阵与通用函数34
2.2.1创建NumPy矩阵34
2.2.2掌握ufunc函数37
任务2.3利用NumPy进行统计分析41
2.3.1读/写文件41
2.3.2使用函数进行简单的统计分析44
2.3.3任务实现48
小结50
实训50
实训1创建数组并进行运算50
实训2创建一个国际象棋的棋盘50
课后习题51
第3章Matplotlib数据可视化基础52
任务3.1掌握绘图基础语法与常用参数52
3.1.1掌握pyplot基础语法53
3.1.2设置pyplot的动态rc参数56
任务3.2分析特征间的关系59
3.2.1绘制散点图59
3.2.2绘制折线图62
3.2.3任务实现65
任务3.3分析特征内部数据分布与分散状况68
3.3.1绘制直方图68
3.3.2绘制饼图70
3.3.3绘制箱线图71
3.3.4任务实现73
小结77
实训78
实训1分析1996 2015年人口数据特征间的关系78
实训2分析1996 2015年人口数据各个特征的分布与分散状况78
课后习题79
第4章pandas统计分析基础80
任务4.1读/写不同数据源的数据80
4.1.1读/写数据库数据80
4.1.2读/写文本文件83
4.1.3读/写Excel文件87
4.1.4任务实现88
任务4.2掌握DataFrame的常用操作89
4.2.1查看DataFrame的常用属性89
4.2.2查改增删DataFrame数据91
4.2.3描述分析DataFrame数据101
4.2.4任务实现104
任务4.3转换与处理时间序列数据107
4.3.1转换字符串时间为标准时间107
4.3.2提取时间序列数据信息109
4.3.3加减时间数据110
4.3.4任务实现111
任务4.4使用分组聚合进行组内计算113
4.4.1使用groupby方法拆分数据114
4.4.2使用agg方法聚合数据116
4.4.3使用apply方法聚合数据119
4.4.4使用transform方法聚合数据121
4.4.5任务实现121
任务4.5创建透视表与交叉表123
4.5.1使用pivot_table函数创建透视表123
4.5.2使用crosstab函数创建交叉表127
4.5.3任务实现128
小结130
实训130
实训1读取并查看P2P网络贷款数据主表的基本信息130
实训2提取用户信息更新表和登录信息表的时间信息130
实训3使用分组聚合方法进一步分析用户信息更新表和登录信息表131
实训4对用户信息更新表和登录信息表进行长宽表转换131
课后习题131
第5章使用pandas进行数据预处理133
任务5.1合并数据133
5.1.1堆叠合并数据133
5.1.2主键合并数据136
5.1.3重叠合并数据139
5.1.4任务实现140
任务5.2清洗数据141
5.2.1检测与处理重复值141
5.2.2检测与处理缺失值146
5.2.3检测与处理异常值149
5.2.4任务实现152
任务5.3标准化数据154
5.3.1离差标准化数据154
5.3.2标准差标准化数据155
5.3.3小数定标标准化数据156
5.3.4任务实现157
任务5.4转换数据158
5.4.1哑变量处理类别型数据158
5.4.2离散化连续型数据160
5.4.3任务实现162
小结163
实训164
实训1插补用户用电量数据缺失值164
实训2合并线损、用电量趋势与线路告警数据164
实训3标准化建模专家样本数据164
课后习题165
第6章使用scikit-learn构建模型167
任务6.1使用sklearn转换器处理数据167
6.1.1加载datasets模块中的数据集167
6.1.2将数据集划分为训练集和测试集170
6.1.3使用sklearn转换器进行数据预处理与降维172
6.1.4任务实现174
任务6.2构建并评价聚类模型176
6.2.1使用sklearn估计器构建聚类模型176
6.2.2评价聚类模型179
6.2.3任务实现182
任务6.3构建并评价分类模型183
6.3.1使用sklearn估计器构建分类模型183
6.3.2评价分类模型186
6.3.3任务实现188
任务6.4构建并评价回归模型190
6.4.1使用sklearn估计器构建线性回归模型190
6.4.2评价回归模型193
6.4.3任务实现194
小结196
实训196
实训1使用sklearn处理wine和wine_quality数据集196
实训2构建基于wine数据集的K-Means聚类模型196
实训3构建基于wine数据集的SVM分类模型197
实训4构建基于wine_quality数据集的回归模型197
课后习题198
第7章航空公司客户价值分析199
任务7.1了解航空公司现状与客户价值分析199
7.1.1了解航空公司现状200
7.1.2认识客户价值分析201
7.1.3熟悉航空客户价值分析的步骤与流程201
任务7.2预处理航空客户数据202
7.2.1处理数据缺失值与异常值202
7.2.2构建航空客户价值分析关键特征202
7.2.3标准化LRFMC模型的5个特征206
7.2.4任务实现207
任务7.3使用K-Means算法进行客户分群209
7.3.1了解K-Means聚类算法209
7.3.2分析聚类结果210
7.3.3模型应用213
7.3.4任务实现214
小结215
实训215
实训1处理信用卡数据异常值215
实训2构造信用卡客户风险评价关键特征217
实训3构建K-Means聚类模型218
课后习题218
第8章财政收入预测分析220
任务8.1了解财政收入预测的背景与方法220
8.1.1分析财政收入预测背景220
8.1.2了解财政收入预测的方法222
8.1.3熟悉财政收入预测的步骤与流程223
任务8.2分析财政收入数据特征的相关性223
8.2.1了解相关性分析223
8.2.2分析计算结果224
8.2.3任务实现225
任务8.3使用Lasso回归选取财政收入预测的关键特征225
8.3.1了解Lasso回归方法226
8.3.2分析Lasso回归结果227
8.3.3任务实现227
任务8.4使用灰色预测和SVR构建财政收入预测模型228
8.4.1了解灰色预测算法228
8.4.2了解SVR算法229
8.4.3分析预测结果232
8.4.4任务实现234
小结236
实训236
实训1求取企业所得税各特征间的相关系数236
实训2选取企业所得税预测关键特征237
实训3构建企业所得税预测模型237
课后习题237
第9章家用热水器用户行为分析与事件识别239
任务9.1了解家用热水器用户行为分析的背景与步骤239
9.1.1分析家用热水器行业现状240
9.1.2了解热水器采集数据基本情况240
9.1.3熟悉家用热水器用户行为分析的步骤与流程241
任务9.2预处理热水器用户用水数据242
9.2.1删除冗余特征242
9.2.2划分用水事件243
9.2.3确定单次用水事件时长阈值244
9.2.4任务实现246
任务9.3构建用水行为特征并筛选用水事件247
9.3.1构建用水时长与频率特征248
9.3.2构建用水量与波动特征249
9.3.3筛选候选洗浴事件250
9.3.4任务实现251
任务9.4构建行为事件分析的BP神经网络模型255
9.4.1了解BP神经网络算法原理255
9.4.2构建模型259
9.4.3评估模型260
9.4.4任务实现260
小结263
实训263
实训1清洗运营商客户数据263
实训2筛选客户运营商数据264
实训3构建神经网络预测模型265
课后习题265
附录A267
附录B270
参考文献295
学习笔记
Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言。 Jupyter Notebook 的本质是一个 Web 应用程序,便于创建和共享文学化程序文档,支持实时代码,数学方程,可视化和 markdown。 用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等 。 定义 (推荐学习:Python视频教程) 用户可以通过电子邮件,Dropbox,GitHub 和 Jupyter Notebook Viewer,将 Jupyter Notebook 分享给其他人。 在Jupyter Notebook 中,代码可以实时的生成图像,视频,LaTeX和JavaScript。 使用 数据挖掘领域中最热门的比赛 Kaggle 里的资料都是Jupyter 格式 。 架构 Jupyter组件 Jupyter包含以下组件: Jupyter Notebook 和 ……
本文实例讲述了Python实现的微信好友数据分析功能。分享给大家供大家参考,具体如下: 这里主要利用python对个人微信好友进行分析并把结果输出到一个html文档当中,主要用到的python包为 itchat , pandas , pyecharts 等 1、安装itchat 微信的python sdk,用来获取个人好友关系。获取的代码 如下: import itchatimport pandas as pdfrom pyecharts import Geo, Baritchat.login()friends = itchat.get_friends(update=True)[0:]def User2dict(User): User_dict = {} User_dict["NickName"] = User["NickName"] if User["NickName"] else "NaN" User_dict["City"] = User["City"] if User["City"] else "NaN" User_dict["Sex"] = User["Sex"] if User["Sex"] else 0 User_dict["Signature"] = User["Signature"] if User["Signature"] else "NaN" ……
基于微信开放的个人号接口python库itchat,实现对微信好友的获取,并对省份、性别、微信签名做数据分析。 效果: 直接上代码,建三个空文本文件stopwords.txt,newdit.txt、unionWords.txt,下载字体simhei.ttf或删除字体要求的代码,就可以直接运行。 #wxfriends.py 2018-07-09import itchatimport sysimport pandas as pdimport matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei']#绘图时可以显示中文plt.rcParams['axes.unicode_minus']=False#绘图时可以显示中文import jiemport jieba.posseg as psegfrom scipy.misc import imreadfrom wordcloud import WordCloudfrom os import path#解决编码问题non_bmp_map = dict.fromkeys(range(0x10000, sys.maxunicode + 1), 0xfffd) #获取好友信息def getFriends():……
Python数据分析之双色球基于线性回归算法预测下期中奖结果示例
本文实例讲述了Python数据分析之双色球基于线性回归算法预测下期中奖结果。分享给大家供大家参考,具体如下: 前面讲述了关于双色球的各种算法,这里将进行下期双色球号码的预测,想想有些小激动啊。 代码中使用了线性回归算法,这个场景使用这个算法,预测效果一般,各位可以考虑使用其他算法尝试结果。 发现之前有很多代码都是重复的工作,为了让代码看的更优雅,定义了函数,去调用,顿时高大上了 #!/usr/bin/python# -*- coding:UTF-8 -*-#导入需要的包import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport operatorfrom sklearn import datasets,linear_modelfrom sklearn.linear_model import LogisticRegression#读取文件d……
以上就是本次介绍的Python数据电子书的全部相关内容,希望我们整理的资源能够帮助到大家,感谢大家对鬼鬼的支持。
注·获取方式:私信(666)
⑨ python中的元类有什么作用
元类是类的类。类定义类的实例(即对象)的行为,而元类定义类的行为。类是元类的实例。虽然在Python中你可以对元类使用任意可调用对象(例如Jerub演示),但是更好的方法是使其成为实际的类。type是Python中常见的元类。type它本身是一个类,并且是它自己的类型。你将无法type纯粹使用Python 重新创建类似的东西,但是Python有点作弊。要在Python中创建自己的元类,你实际上只想将其子类化type。元类最常用作类工厂。class执行该语句时,Python首先将class语句的主体作为普通代码块执行。生成的名称空间(字典)保留了将来类的属性。通过查看待定类的基类(继承了元类),待定类的__metaclass__属性(如果有)或__metaclass__全局变量来确定元类。然后使用该类的名称,基数和属性调用该元类以实例化它。但是,元类实际上定义了类的类型,而不仅仅是它的工厂,因此你可以使用它们做更多的事情。例如,你可以在元类上定义常规方法。这些元类方法就像类方法,因为它们可以在没有实例的情况下在类上调用,但是它们也不像类方法,因为它们不能在类的实例上被调用。type.__subclasses__()是type元类上方法的示例。你还可以定义正常的“魔力”的方法,如__add__,__iter__和__getattr__,执行或如何变化的类的行为。