‘壹’ 零基础如何入门学习python
Python全栈开发与人工智能之Python开发基础知识学习内容包括:Python基础语法、数据类型、字符编码、文件操作、函数、装饰器、迭代器、内置方法、常用模块等。
Python全栈开发与人工智能之Python高级编程和数据库开发知识学习内容包括:面向对象开发、Socket网络编程、线程、进程、队列、IO多路模型、Mysql数据库开发等。
Python全栈开发与人工智能之前端开发知识学习内容包括:Html、CSS、JavaScript开发、Jquery&bootstrap开发、前端框架VUE开发等。
Python全栈开发与人工智能之WEB框架开发学习内容包括:Django框架基础、Django框架进阶、BBS+Blog实战项目开发、缓存和队列中间件、Flask框架学习、Tornado框架学习、Restful API等。
Python全栈开发与人工智能之爬虫开发学习内容包括:爬虫开发实战。
Python全栈开发与人工智能之全栈项目实战学习内容包括:企业应用工具学习、CRM客户关系管理系统开发、路飞学城在线教育平台开发等。
Python全栈开发与人工智能之数据分析学习内容包括:金融量化分析。
Python全栈开发与人工智能之人工智能学习内容包括:机器学习、数据分析 、图像识别、自然语言翻译等。
Python全栈开发与人工智能之自动化运维&开发学习内容包括:CMDB资产管理系统开发、IT审计+主机管理系统开发、分布式主机监控系统开发等。
Python全栈开发与人工智能之高并发语言GO开发学习内容包括:GO语言基础、数据类型与文件IO操作、函数和面向对象、并发编程等。
‘贰’ 如何系统地自学 Python
是否非常想学好 Python,一方面被琐事纠缠,一直没能动手,另一方面,担心学习成本太高,心里默默敲着退堂鼓?
幸运的是,Python 是一门初学者友好的编程语言,想要完全掌握它,你不必花上太多的时间和精力。
Python 的设计哲学之一就是简单易学,体现在两个方面:
语法简洁明了:相对 Ruby 和 Perl,它的语法特性不多不少,大多数都很简单直接,不玩儿玄学。
切入点很多:Python 可以让你可以做很多事情,科学计算和数据分析、爬虫、Web 网站、游戏、命令行实用工具等等等等,总有一个是你感兴趣并且愿意投入时间的。
废话不多说,学会一门语言的捷径只有一个: Getting Started
¶ 起步阶段
任何一种编程语言都包含两个部分:硬知识和软知识,起步阶段的主要任务是掌握硬知识。
硬知识
“硬知识”指的是编程语言的语法、算法和数据结构、编程范式等,例如:变量和类型、循环语句、分支、函数、类。这部分知识也是具有普适性的,看上去是掌握了一种语法,实际是建立了一种思维。例如:让一个 Java 程序员去学习 Python,他可以很快的将 Java 中的学到的面向对象的知识 map 到 Python 中来,因此能够快速掌握 Python 中面向对象的特性。
如果你是刚开始学习编程的新手,一本可靠的语法书是非常重要的。它看上去可能非常枯燥乏味,但对于建立稳固的编程思维是必不可少。
下面列出了一些适合初学者入门的教学材料:
廖雪峰的 Python 教程 Python 中文教程的翘楚,专为刚刚步入程序世界的小白打造。
笨方法学 Python 这本书在讲解 Python 的语法成分时,还附带大量可实践的例子,非常适合快速起步。
The Hitchhiker’s Guide to Python! 这本指南着重于 Python 的最佳实践,不管你是 Python 专家还是新手,都能获得极大的帮助。
Python 的哲学:
学习也是一样,虽然推荐了多种学习资料,但实际学习的时候,最好只选择其中的一个,坚持看完。
必要的时候,可能需要阅读讲解数据结构和算法的书,这些知识对于理解和使用 Python 中的对象模型有着很大的帮助。
软知识
“软知识”则是特定语言环境下的语法技巧、类库的使用、IDE的选择等等。这一部分,即使完全不了解不会使用,也不会妨碍你去编程,只不过写出的程序,看上去显得“傻”了些。
对这些知识的学习,取决于你尝试解决的问题的领域和深度。对初学者而言,起步阶段极易走火,或者在选择 Python 版本时徘徊不决,一会儿看 2.7 一会儿又转到 3.0,或者徜徉在类库的大海中无法自拔,Scrapy,Numpy,Django 什么都要试试,或者参与编辑器圣战、大括号缩进探究、操作系统辩论赛等无意义活动,或者整天跪舔语法糖,老想着怎么一行代码把所有的事情做完,或者去构想圣洁的性能安全通用性健壮性全部满分的解决方案。
很多“大牛”都会告诫初学者,用这个用那个,少走弯路,这样反而把初学者推向了真正的弯路。
还不如告诉初学者,学习本来就是个需要你去走弯路出 Bug,只能脚踏实地,没有奇迹只有狗屎的过程。
选择一个方向先走下去,哪怕脏丑差,走不动了再看看有没有更好的解决途径。
自己走了弯路,你才知道这么做的好处,才能理解为什么人们可以手写状态机去匹配却偏要发明正则表达式,为什么面向过程可以解决却偏要面向对象,为什么我可以操纵每一根指针却偏要自动管理内存,为什么我可以嵌套回调却偏要用 Promise...
更重要的是,你会明白,高层次的解决方法都是对低层次的封装,并不是任何情况下都是最有效最合适的。
技术涌进就像波浪一样,那些陈旧的封存已久的技术,消退了迟早还会涌回的。就像现在移动端应用、手游和 HTML5 的火热,某些方面不正在重演过去 PC 的那些历史么?
因此,不要担心自己走错路误了终身,坚持并保持进步才是正道。
起步阶段的核心任务是掌握硬知识,软知识做适当了解,有了稳固的根,粗壮的枝干,才能长出浓密的叶子,结出甜美的果实。
¶ 发展阶段
完成了基础知识的学习,必定会感到一阵空虚,怀疑这些语法知识是不是真的有用。
没错,你的怀疑是非常正确的。要让 Python 发挥出它的价值,当然不能停留在语法层面。
发展阶段的核心任务,就是“跳出 Python,拥抱世界”。
在你面前会有多个分支:科学计算和数据分析、爬虫、Web 网站、游戏、命令行实用工具等等等等,这些都不是仅仅知道 Python 语法就能解决的问题。
拿爬虫举例,如果你对计算机网络,HTTP 协议,HTML,文本编码,JSON 一无所知,你能做好这部分的工作么?而你在起步阶段的基础知识也同样重要,如果你连循环递归怎么写都还要查文档,连 BFS 都不知道怎么实现,这就像工匠做石凳每次起锤都要思考锤子怎么使用一样,非常低效。
在这个阶段,不可避免要接触大量类库,阅读大量书籍的。
类库方面
“Awesome Python 项目”:vinta/awesome-python · GitHub
这里列出了你在尝试解决各种实际问题时,Python 社区已有的工具型类库,如下图所示:
vinta/awesome-python
你可以按照实际需求,寻找你需要的类库。
至于相关类库如何使用,必须掌握的技能便是阅读文档。由于开源社区大多数文档都是英文写成的,所以,英语不好的同学,需要恶补下。
书籍方面
这里我只列出一些我觉得比较有一些帮助的书籍,详细的请看豆瓣的书评:
科学和数据分析:
❖“集体智慧编程”:集体智慧编程 (豆瓣)
❖“数学之美”:数学之美 (豆瓣)
❖“统计学习方法”:统计学习方法 (豆瓣)
❖“Pattern Recognition And Machine Learning”:Pattern Recognition And Machine Learning (豆瓣)
❖“数据科学实战”:数据科学实战 (豆瓣)
❖“数据检索导论”:信息检索导论 (豆瓣)
爬虫:
❖“HTTP 权威指南”:HTTP权威指南 (豆瓣)
Web 网站:
❖“HTML & CSS 设计与构建网站”:HTML & CSS设计与构建网站 (豆瓣)
...
列到这里已经不需要继续了。
聪明的你一定会发现上面的大部分书籍,并不是讲 Python 的书,而更多的是专业知识。
事实上,这里所谓“跳出 Python,拥抱世界”,其实是发现 Python 和专业知识相结合,能够解决很多实际问题。这个阶段能走到什么程度,更多的取决于自己的专业知识。
¶ 深入阶段
这个阶段的你,对 Python 几乎了如指掌,那么你一定知道 Python 是用 C 语言实现的。
可是 Python 对象的“动态特征”是怎么用相对底层,连自动内存管理都没有的C语言实现的呢?这时候就不能停留在表面了,勇敢的拆开 Python 的黑盒子,深入到语言的内部,去看它的历史,读它的源码,才能真正理解它的设计思路。
这里推荐一本书:
“Python 源码剖析”:Python源码剖析 (豆瓣)
这本书把 Python 源码中最核心的部分,给出了详细的阐释,不过阅读此书需要对 C 语言内存模型和指针有着很好的理解。
另外,Python 本身是一门杂糅多种范式的动态语言,也就是说,相对于 C 的过程式、 Haskell 等的函数式、Java 基于类的面向对象而言,它都不够纯粹。换而言之,编程语言的“道学”,在 Python 中只能有限的体悟。学习某种编程范式时,从那些面向这种范式更加纯粹的语言出发,才能有更深刻的理解,也能了解到 Python 语言的根源。
这里推荐一门公开课
“编程范式”:斯坦福大学公开课:编程范式
讲师高屋建瓴,从各种编程范式的代表语言出发,给出了每种编程范式最核心的思想。
值得一提的是,这门课程对C语言有非常深入的讲解,例如C语言的范型和内存管理。这些知识,对阅读 Python 源码也有大有帮助。
Python 的许多最佳实践都隐藏在那些众所周知的框架和类库中,例如 Django、Tornado 等等。在它们的源代码中淘金,也是个不错的选择。
¶ 最后的话
每个人学编程的道路都是不一样的,其实大都殊途同归,没有迷路的人只有不能坚持的人!
希望想学 Python 想学编程的同学,不要犹豫了,看完这篇文章,
Just Getting Started !!!
‘叁’ 自己动手写Python进行文本转语音程序,共计11行代码
1、首先安装Python程序推荐3.7
2、下载 pyttsx3库。
3、将需要转换的文本和程序放到一起。
4、运行程序就会朗读文本和保存文本朗读的语音文件。
以下是源代码:
import pyttsx3
with open ( 'word.txt' , encoding = 'utf-8' ) as obj:
line=obj.readline()
engine=pyttsx3.init()
rate=engine.getProperty( 'rate' )
engine.setProperty( 'rate' , 160 )
volume=engine.getProperty( 'volume' )
engine.setProperty( 'volume' , 0.6 )
engine.say(line)
engine.save_to_file(line, 'abc.mp3' )
engine.runAndWait()
‘肆’ 如何编写ros的python程序
ROS Indigobeginner_Tutorials-10编写ROS话题版的Hello World程序(Python版)
我使用的虚拟机软件:VMware Workstation 11
使用的Ubuntu系统:Ubuntu 14.04.4 LTS
ROS版本:ROS Indigo
1. 前言 :
Hello world程序,在我们编程界,代表学习某种语言编写的第一个程序。对于ROS机器人操作系统来说,这个Hello World程序就是 : 写一个简单的消息发布器(发送) 和 订阅器(接收)。
2. 准备工作 :
C++的程序都会存放在每个程序包的src文件夹里。Python不同,Python程序都存放在scripts文件夹中, 反正意思都是源文件包。
Step 1 .所以,先在beginner_tutorials软件包中创建一个scripts文件夹:
$ roscd beginner_tutorials$ mkdir scripts$ cd scripts123
3. 编写消息发布器节点程序:
如果你懒得去写的话,你可以使用wget命令, 在github上获取一个talker.py源代码。如何获取呢 ?
Step 2 .开一个终端,输入下面的命令就可以获取talker.py:
$ wget
-devel/rospy_tutorials/001_talker_listener/talker.py$ ls
talker.py123
但是我建议你亲自动手,写一写:手动创建一个talker.py文件在/scripys文件夹里:
$ roscd beginner_tutorials/scripts$ gedit talker.py12
将这上面链接里的代码手动输入到talker.py文件中。(我就不将代码贴上来了)
下面我来讲解一下代码:
这些足以说明,hello_world_topic.launch启动脚本文件,启动成功。
总结:发布器和订阅器是很简单的, 就是简单的发布一个 自定义的话题。
我之前使用说过:节点之间通讯的方式有两种 : 话题(rostopic) 和 服务(rosservice)
所以,接下来,我们会讲:使用ROS服务来完成ROS版Hello World程序的例子。但是在这之前,我们需要学一学:如何创建自定义的ROS消息和ROS服务,以便ROS服务版的Hello World程序的编写。
所以下一讲,我们来学习:如何创建自定义的ROS消息和ROS服务。
‘伍’ python新手应该怎么自学需要什么条件零基础自学大概多久
Python是一种计算机程序设计语言。你可能已经听说过很多种流行的编程语言,比如非常难学的C语言,非常流行的Java语言,适合初学者的Basic语言,适合网页编程的JavaScript语言等等。
那Python是一种什么语言? 首先,我们普及一下编程语言的基础知识。用任何编程语言来开发程序,都是为了让计算机干活,比如下载一个MP3,编写一个文档等等,而计算机干活的CPU只认识机器指令,所以,尽管不同的编程语言差异极大,最后都得“翻译”成CPU可以执行的机器指令。而不同的编程语言,干同一个活,编写的代码量,差距也很大。
比如,完成同一个任务,C语言要写1000行代码,Java只需要写100行,而Python可能只要20行。 所以Python是一种相当高级的语言。 你也许会问,代码少还不好?代码少的代价是运行速度慢,C程序运行1秒钟,Java程序可能需要2秒,而Python程序可能就需要10秒。
那是不是越低级的程序越难学,越高级的程序越简单?表面上来说,是的,但是,在非常高的抽象计算中,高级的Python程序设计也是非常难学的,所以,高级程序语言不等于简单。
但是,对于初学者和完成普通任务,Python语言是非常简单易用的。连Google都在大规模使用Python,你就不用担心学了会没用。
用Python可以做什么?可以做日常任务,比如自动备份你的MP3;可以做网站,很多着名的网站包括YouTube就是Python写的;可以做网络游戏的后台,很多在线游戏的后台都是Python开发的。总之就是能干很多很多事啦。
Python当然也有不能干的事情,比如写操作系统,这个只能用C语言写;写手机应用,只能用Objective-C(针对iPhone)和Java(针对Android);写3D游戏,最好用C或C++。 如果你是小白用户,满足以下条件: 会使用电脑,但从来没写过程序; 还记得初中数学学的方程式和一点点代数知识; 想从编程小白变成专业的软件架构师; 每天能抽出一个半小时学习。可以看下面的代码
‘陆’ Python可以用来干什么你心动了吗
近来,随着大数据分析的火热,人工智能的追捧,技术创新可谓是精彩纷呈,而python作为后起之秀实在是功不可没。python语言可谓是赚足了技术开发者的眼光,各路英雄对python的评价可谓是愈演愈烈,我呢也收到各方朋友发来的私信,大部分小伙伴咨询的内容意思是关于学习python如何,前途怎么样,到底有什么作用等等。本文主要列举一下python的应用,所以我特此写下此文,供各位朋友参考,希望对您有所启发。
1、web开发pytyon拥有非常完善的与web服务器进行交互的库,以及大量的免费的前端网页模板。更具优势的是,有非常优秀且成熟的Django Web框架,功能一应俱全。
2、linux系统运维事实上,在早期都是通过shell脚本来去实现自动化运维,但是由于shell脚本本身呢可编程的能力偏弱,一些需要实现的功能的库也很少,大部分都需要自己从头写起,然而pyhon作为“胶水语言”可以很方便的和其他由于集成起来,对各类工具进行方便发二次开发,形成一套自己的运维管理系统。
3、 游戏 开发python在 游戏 开发方面可能不及Lua 或者是 C++,但是由于python脚本化的优点,类似于 游戏 剧本、 游戏 玩法逻辑等这种非常灵活的设计上,我们呢修改起来十分方便。当然了,如果开发一款小的 游戏 程序,python还是很具有优势的,比较出名的就是pygame了,或许是我们自娱自乐的一个福音啦。
4、网络爬虫在爬虫方面,python是独领风骚的。python有非常丰富的库去访问网页文档的接口api以及后期网页文档的快速处理。
5、桌面软件在window系统桌面开发领域,相信C++ MFC应该是用的比较广的了,python可以实现对C++的无缝对接,并且同时支持Qt和GTK。
6、数据处理python作为一门工程性语言,对于数据处理的类库是相当丰富的,比如有高性能的科学计算类库NumPy和SciPy。
7、人工智能事实上,真正的人工智能的底层语言是C/C++,因为真正的计算全在于C/C++,而python仅仅是调用AI的接口然后去实现一些逻辑而已。但是为什么说人工智能首先python呢?这个其实是由于python作为“胶水语言”的特质才会显的出类拔萃,主要使用python是因为CPython和底层原因的融合使得开发起来更加方便。
学Python需要多长时间?
如果是自学,从零基础开始学习Python的话,依照每个人理解能力的不同,大致上需要半年到一年半左右的时间。当然,如果有其它编程语言的经验,入门还是非常快的,大概需要2~3个月可以对上手Python语言编写一些简单的应用。
无论是新手还是有一定基础的朋友,建议找一个有经验的人带着自己学习,这就是为什么好多人参加Python培训课程的原因,对于自学这来说2个月左右才能入门,4个月左右对Python有一个全面系统的了解,达到自己动手编程解决问题的能力,相对比培训班的学员学习周期要长很多。
精通Python需要多长时间?
任何知识都是基础入门比较快,达到精通的程序是需要时日的,这是一个逐渐激烈的过程。
精通任何一门编程语言,都需要通过大量的实践来积累经验,解决遇到的各种疑难问题,看别人的源码,分享自己的分码的这个过程,才能够精通Python的方方面面。从编程的一开始,就应该不断的动手去编写代码,不停的去实践,不停的去修改,不停的总结经验,最终才能熟能生巧,达到精通。
一个对Python程序能算的上精通的程序员,对同样一个问题,他知道很多种解决问题的方法,并能从中选择最有效率的方法!说了怎么多,你喜欢Python么?喜欢就来跟我聊聊吧!
‘柒’ python自学行吗
在当前诸多的计算机编程语言当中,Python语言确实算是比较简单易学的一种,即使没有任何编程基础的人,也完全可以通过自学来入门,但是要想能够把Python语言用得好,还需要有场景的支撑。
Python语言与Java、PHP等编程语言不同,Python语言在传统行业领域也有比较广泛的应用,随着诸多企业纷纷实现业务上云,未来Python语言的应用场景会得到进一步拓展,所以当前普通职场人学习Python是不错的选择。
Python基础
对于零基础学员,如要要达到使用Python的需要,那都是需要从Python基础知识进行系统学习的。《零基础学Python》教材,为便于没有变成基础的同学学习,整理了下python基本知识点及对小白学员友好的学习顺序。
要学好编程,理解+实践都很重要,但最最重要的还是实践,在实践中理解知识更深刻。
‘捌’ 如何自学 Python
其实python非常适合初学者入门。相比较其他不少主流编程语言,有更好的可读性,因此上手相对容易。自带的各种模块加上丰富的第三方模块,免去了很多“重复造轮子”的工作,可以更快地写出东西。
我是真正零基础开始学Python的,从一开始的一窍不通,到3个月后成功搭建了一个动态网站(没有用任何框架)。相比于计算机大牛,我更加知道一个小白将会遇到什么坑,遇到哪些难点。我把我的学习过程写在下面,并附上在每个阶段的学习资料,希望对零基础的Python学习
‘玖’ 可以用 Python 编程语言做哪些神奇好玩的事情
机器学习,比如手写字识别,人脸识别,垃圾邮件处理等。 当然还可以画图,和matlab类似,不过是工业级的。
也许最初设计 Python 这种语言的人并没有想到今天Python 会在工业和科研上获得如此广泛的使用。着名的自由软件作者Eric Raymond 在他的文章《如何成为一名黑客》中,将Python 列为黑客应当学习的四种编程语言之一,并建议人们从Python 开始学习编程。这的确是一个中肯的建议,对于那些从来没有学习过编程或者并非计算机专业的编程学习者而言,Python 是最好的选择之一。Python 第一次学习Python,我只用了不到二十分钟的时间,站在书店里把一本教初学编程的人学习Python 的书翻了一遍。也是从那时起,我开始被这种神奇的语言吸引。 Python 可以用来开发symbian 上的东西。 易用与速度的完美结合Python 是一种用起来很方便的语言,很多初学Java 的人都会被 Java 的CLASSPATH 搞得晕头转向,花上半天的时间才搞明白原来是CLASSPATH 搞错了自己的 Hello World 才没法运行。用Python 就不会有这种问题,只要装上就能直接用。 Python 是一种脚本语言,写好了就可以直接运行,省去了编译链接的麻烦,对于需要多动手实践的初学者而言,也就是少了出错的机会。而且Python 还有一种交互的方式,如果是一段简单的小程序,连编辑器都可以省了,直接敲进去就能运行。Python 是一种清晰的语言,用缩进来表示程序的嵌套关系可谓是一种创举,把过去软性的编程风格升级为硬性的语法规定。再不需要在不同的风格间选择、再不需要为不同的风格争执。与 Perl 不同,Python 中没有各种隐晦的缩写,不需要去强记各种奇怪的符号的含义。Python 写的程序很容易懂,这是不少人的共识。Python 是一种面向对象的语言,但它的面向对象却不象C++那样强调概念,而是更注重实用。不是为了体现对概念的完整支持而把语言搞得很复杂,而是用最简单的方法让编程者能够享受到面向对象带来的好处,这正是 Python 能像 Java、C#那样吸引众多支持者的原因之一。 Python 是一种功能丰富的语言,它拥有一个强大的基本类库和数量众多的第三方扩展,使得Python 程序员无需去羡慕Java 的JDK。Python 为程序员提供了丰富的基本功能使得人们写程序时用不着一切最底层做起。说到这里,人们通常会用一种担心:脚本语言通常很慢。脚本语言从运行的速度讲的确会慢一些,但 Python 的速度却比人们想象得快很多。虽然 Python 是一种脚本语言,但实际上也可以对它进行编译,就象编译Java 程序一样将Python 程序编译为一种特殊的ByteCode,在程序运行时,执行的是ByteCode,省去了对程序文本的分析解释,速度自然提升很多。在用Java 编程是,人们崇尚一种Pure Java 的方式,除了虚拟机一切东西都用Java 编写,无论是基本的数据结构还是图形界面,而Pure Java 的SWING,却成为无数Java 应用开发者的噩梦。Python 崇尚的是实用,它的整体环境是用C 来编写的,很多基本的功能和扩展的模块都是用 C/C++来编写的,当执行这一部分代码时,它的速度就是C 的速度。用Python 编写的普通桌面程序,其启动运行速度与用C 写的程序差别不大。除了这些,通过一些第三方软件包,用Python 编写的源代码还可以以类似JIT 的方式运行,而这可以大大提高Python 代码的运行速度,针对不同类型的代码,会有2 倍至100 倍不等的速度提升。 Python 是我见到过的语言中,在易用性和速度上结合的最完美的一个,通过丧失一点点经常可以忽略不计的运行速度从而获得更高的编程效率,这就是我选择Python 的原因。把精力放在要解决的问题上选择一种合适的语言,才能让你把有限的精力放到最需要解决的问题上。不同的语言有不同的作用,C 和汇编适合编写系统软件,如果用它们来编写企业应用,恐怕没几个人能得心应手。我以前就碰到一个用汇编写数据库程序的哥,虽然最基本的功能完成了,但要增加个报表预览什么的,他就没法应付了。聪明的程序员是用合适的工具去完成任务,想找一把万能钥匙是不太可能的。Python 的自动的垃圾回收机制是高级的编程语言的一种基本特性,用拥有这一功能的语言编程,程序员们通常不用去关心内存泄漏的问题,而当我们用 C/C++写程序时,这却是最重要的需要认真考虑却又很容易出错的问题之一。数据结构是程序构成的重要部分,链表、树、图这些在用C 编程时需要仔细表达的问题在Python 中简单了很多。在Python 中,最基本的数据结构就是数组、序列和哈希表,用它们想要表达各种常见的数据结构是非常容易的。没了定义指针、分配内存的任务,编程变得有趣了。CORBA 是一种高级的软件体系结构,它是语言无关平台无关的。C++、Java 等语言都有CORBA 绑定,但与它们相比,Python 的 CORBA 绑定却容易很多,因为在程序员看来,一个 CORBA 的类和 Python 的类用起来以及实现起来并没有什么差别。没了复杂体系结构的困扰,用 Python 编写CORBA 程序也变得容易了。好钢要用在刀刃上,要想用有限的时间完成尽量多的任务,就要把各种无关的问题抛弃,而Python 恰恰提供了这种方法。跨平台又易扩展随着Linux 的不断成熟,越来越多的人转到Linux 平台上工作,软件的开发者自然就希望自己编写的软件可以在所有平台下运行。Java 一次编写处处运行的口号使它成为跨平台的开发工具的典范,但其运行速度却不被人们看好。实际上,几乎所有的着名脚本语言都是跨平台的,Python 也不例外。