导航:首页 > 编程语言 > python递归全排列

python递归全排列

发布时间:2022-12-06 11:19:57

python全排列代码,求解释

defperm(l):
#定义自定义函数函数名为perm参数为l当传入参数时l等于该参数
if(len(l)<=1):
#if语句如果传入的参数l的长度小于等于1(也就是0)则运行下面代码否则跳过该if##语句
return[l]
#返回列表[l]此处为递归的终止
r=[]
#定义列表并初始化r
foriinrange(len(l)):
#for循环(c语言常这么说)迭代i的变化范围为0到l(字母L)的长度-1
s=l[:i]+l[i+1:]
#将l的前三项以及l的第i+1后的字串赋给s
p=perm(s)
#递归将s做perm的处理递归请网络
forxinp:
#迭代p列表
r.append(l[i:i+1]+x)
#将l的第i项添加进r列表
returnr
#返回r列表

函数功能:将传入perm()的字串、列表等参数进行全排列 并返回全排列后的列表


#递归不是人的思考方式…

❷ Python 实现递归

一、使用递归的背景

先来看一个☝️接口结构:

这个孩子,他是一个列表,下面有6个元素

展开children下第一个元素[0]看看:

发现[0]除了包含一些字段信息,还包含了 children 这个字段(喜当爹),同时这个children下包含了2个元素:

展开他的第一个元素,不出所料,也含有children字段(人均有娃)

可以理解为children是个对象,他包含了一些属性,特别的是其中有一个属性与父级children是一模一样的,他包含父级children所有的属性。

比如每个children都包含了一个name字段,我们要拿到所有children里name字段的值,这时候就要用到递归啦~

二、find_children.py

拆分理解:

1.首先import requests库,用它请求并获取接口返回的数据

2.若children以上还有很多层级,可以缩小数据范围,定位到children的上一层级

3.来看看定义的函数
我们的函数调用:find_children(node_f, 'children')
其中,node_f:json字段
    children:递归对象

 以下这段是实现递归的核心:
   if items['children']:
 items['children']不为None,表示该元素下的children字段还有子类数据值,此时满足if条件,可理解为 if 1。
 items['children']为None,表示该元素下children值为None,没有后续可递归值,此时不满足if条件,可理解为 if 0,不会再执行if下的语句(不会再递归)。

至此,每一层级中children的name以及下一层级children的name就都取出来了

希望到这里能帮助大家理解递归的思路,以后根据这个模板直接套用就行

(晚安啦~)

源码参考: https://www.coder4.com/archives/5767

❸ python几种经典排序方法的实现

class SortMethod:
'''
插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。
插入算法把要排序的数组分成两部分:
第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置)
第二部分就只包含这一个元素(即待插入元素)。
在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。
'''
def insert_sort(lists):
# 插入排序
count = len(lists)
for i in range(1, count):
key = lists[i]
j = i - 1
while j >= 0:
if lists[j] > key:
lists[j + 1] = lists[j]
lists[j] = key
j -= 1
return lists
'''
希尔排序 (Shell Sort) 是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因 DL.Shell 于 1959 年提出而得名。
希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至 1 时,整个文件恰被分成一组,算法便终止。
'''
def shell_sort(lists):
# 希尔排序
count = len(lists)
step = 2
group = count / step
while group > 0:
for i in range(0, group):
j = i + group
while j < count:
k = j - group
key = lists[j]
while k >= 0:
if lists[k] > key:
lists[k + group] = lists[k]
lists[k] = key
k -= group
j += group
group /= step
return lists
'''
冒泡排序重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
'''
def bubble_sort(lists):
# 冒泡排序
count = len(lists)
for i in range(0, count):
for j in range(i + 1, count):
if lists[i] > lists[j]:
temp = lists[j]
lists[j] = lists[i]
lists[i] = temp
return lists
'''
快速排序
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列
'''
def quick_sort(lists, left, right):
# 快速排序
if left >= right:
return lists
key = lists[left]
low = left
high = right
while left < right:
while left < right and lists[right] >= key:
right -= 1
lists[left] = lists[right]
while left < right and lists[left] <= key:
left += 1
lists[right] = lists[left]
lists[right] = key
quick_sort(lists, low, left - 1)
quick_sort(lists, left + 1, high)
return lists
'''
直接选择排序
第 1 趟,在待排序记录 r[1] ~ r[n] 中选出最小的记录,将它与 r[1] 交换;
第 2 趟,在待排序记录 r[2] ~ r[n] 中选出最小的记录,将它与 r[2] 交换;
以此类推,第 i 趟在待排序记录 r[i] ~ r[n] 中选出最小的记录,将它与 r[i] 交换,使有序序列不断增长直到全部排序完毕。
'''
def select_sort(lists):
# 选择排序
count = len(lists)
for i in range(0, count):
min = i
for j in range(i + 1, count):
if lists[min] > lists[j]:
min = j
temp = lists[min]
lists[min] = lists[i]
lists[i] = temp
return lists
'''
堆排序 (Heapsort) 是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。
可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即 A[PARENT[i]] >= A[i]。
在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。
'''
# 调整堆
def adjust_heap(lists, i, size):
lchild = 2 * i + 1
rchild = 2 * i + 2
max = i
if i < size / 2:
if lchild < size and lists[lchild] > lists[max]:
max = lchild
if rchild < size and lists[rchild] > lists[max]:
max = rchild
if max != i:
lists[max], lists[i] = lists[i], lists[max]
adjust_heap(lists, max, size)
# 创建堆
def build_heap(lists, size):
for i in range(0, (size/2))[::-1]:
adjust_heap(lists, i, size)
# 堆排序
def heap_sort(lists):
size = len(lists)
build_heap(lists, size)
for i in range(0, size)[::-1]:
lists[0], lists[i] = lists[i], lists[0]
adjust_heap(lists, 0, i)
'''
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法 (Divide and Conquer) 的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
归并过程为:
比较 a[i] 和 a[j] 的大小,若 a[i]≤a[j],则将第一个有序表中的元素 a[i] 复制到 r[k] 中,并令 i 和 k 分别加上 1;
否则将第二个有序表中的元素 a[j] 复制到 r[k] 中,并令 j 和 k 分别加上 1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到 r 中从下标 k 到下标 t 的单元。归并排序的算法我们通常用递归实现,先把待排序区间 [s,t] 以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间 [s,t]。
'''
def merge(left, right):
i, j = 0, 0
result = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result += left[i:]
result += right[j:]
return result
def merge_sort(lists):
# 归并排序
if len(lists) <= 1:
return lists
num = len(lists) / 2
left = merge_sort(lists[:num])
right = merge_sort(lists[num:])
return merge(left, right)
'''
基数排序 (radix sort) 属于“分配式排序” (distribution sort),又称“桶子法” (bucket sort) 或 bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些“桶”中,借以达到排序的作用,基数排序法是属于稳定性的排序。
其时间复杂度为 O (nlog(r)m),其中 r 为所采取的基数,而 m 为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。
'''
import math
def radix_sort(lists, radix=10):
k = int(math.ceil(math.log(max(lists), radix)))
bucket = [[] for i in range(radix)]
for i in range(1, k+1):
for j in lists:
bucket[j/(radix**(i-1)) % (radix**i)].append(j)
del lists[:]
for z in bucket:
lists += z
del z[:]
return lists
---------------------
作者:CRazyDOgen
来源:CSDN
原文:https://blog.csdn.net/jipang6225/article/details/79975312
版权声明:本文为博主原创文章,转载请附上博文链接!

❹ Python 排列组合

以上四种情况均为最常见的排列组合,从有无顺序和是否重复两个维度进行思考,建议理解并背诵。

在使用python计算排列组合之前,需要计算阶乘,可以有两种方式,一是使用math库中的factorial函数,二是使用如下的递归函数。

按照排列的公式:

按照组合的公式:

3.1 生日问题

假设一个班级中共有n个人,一年有365天,其中每天作为生日的概率是相等的,那么其中至少有两个人的生日在同一天的概率是多少?

此题属于全排列问题,需要反向思考,写出公式之后直接输入到python中计算

3.2 大乐透问题

大乐透的玩法是这样的,从35个红球中选择5个,从12个红球中选择2个,如果全中,那就中一等奖。那么请问,中一等奖的概率是多少?

此题属于组合问题,中奖的可能性为一种,因此分子为1,分母为所有的组合情况。

❺ Python:全排列 - permuteUnique

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

示例 1:
输入:nums = [1,1,2]
输出:
[[1,1,2],
[1,2,1],
[2,1,1]]

示例 2:
输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

源码:

运行结果:

❻ python递归算法经典实例有哪些

程序调用自身的编程技巧称为递归( recursion)。递归做为一种算法在程序设计语言中广泛应用。 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法。

它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。

递归的能力在于用有限的语句来定义对象的无限集合。一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。

Python

是完全面向对象的语言。函数、模块、数字、字符串都是对象。并且完全支持继承、重载、派生、多继承,有益于增强源代码的复用性。Python支持重载运算符和动态类型。相对于Lisp这种传统的函数式编程语言,Python对函数式设计只提供了有限的支持。有两个标准库(functools, itertools)提供了Haskell和Standard ML中久经考验的函数式程序设计工具。

❼ 46. 全排列(Python)

更多精彩内容,请关注 【力扣中等题】 。

难度:★★★☆☆
类型:数学
方法:回溯法

给定一个没有重复数字的序列,返回其所有可能的全排列。

输入: [1,2,3]
输出:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]

全排列其实可以使用python内置的permutations函数,例如求['a', 'b', 'c']的全排列,可以使用:itertools.permutations(['a', 'b', 'c'],3)快速得到。这里参考了 大佬博客 。

我们举个例子,以字符串行表['a', 'b', 'c']为例,我们逐个位确定全排列的所有可能。回溯法的原理在于在前n-1位元素确定的情况下,求取n位以后的全排列。本例中,首先固定第0位,就是分别将第0位与它本身及后面各位元素交换,得到3种不同的可能,在固定这一位后,在考虑第1位的可能性,将第1位与它本身及其后元素交换,有两种可能性,当前两位元素确定后,最后一位只有一种可能性。因此一共有6种可能。

这里需要注意的是,每次交换元素并回溯寻找后,都要将元素交换回来,保持没有交换前的状态。

与回溯法类似,增加临时列表用来存储是否查看过变量。

如有疑问或建议,欢迎评论区留言~

❽ Python中用递归的思想求ABCDE的全排列

defp(s,res=[]):
#将字符c插入到数列ar中,会有多少种排列
defh(c,ar):
return[ar[:i]+[c]+ar[i:]foriinrange(len(ar)+1)]
#已有结果arr的基础上,如果增加c字符,arr会变成多少种排列
defg(c,arr,res=[]):
ifarr==res==[]:
return[[c]]
elifarr==[]:
returnres
else:
returng(c,arr[1:],res+h(c,arr[0]))
#主体递归
ifs=='':
returnres
else:
returnp(s[1:],g(s[0],res))

if__name__=='__main__':
s='ABCDE'
forxinp(s):
print(''.join(x))

❾ python递归的一个小问题

perm函数输出的是参数list从参数k位置开始,到参数m位置结束的全排列
def perm(list,k,m):
if k==m:
for i in range(m+1): # 递归的结束条件是k==m,在整个递归过程中参数m(即结束位置没有改变),而参数k则每次递归+1
print list[i], # 输出递归结束时的list状态
print
else:
for i in range(k,m+1): # 该循环用来负责生成递归的下一个状态
list[k],list[i]=list[i],list[k] # 将list的k位置与每一个位置i分别交换
perm(list,k+1,m) # 由于k位置与每一个位置i交换,也即k位置所有可能选值都已被穷举,此时只需要继续计算k+1之后的职位即可,因此以k+1为开始位置,结束位置m不变进入下一层递归
list[k],list[i]=list[i],list[k] # 由于list是引用传递,因此需要在位置交换之后重新交换,以保证list不变

阅读全文

与python递归全排列相关的资料

热点内容
mdk编译后目标文件 浏览:613
老人动手解压 浏览:720
小米sd卡解压 浏览:996
程序员那么可爱陆漓替老袁说情 浏览:28
当女程序员遇见问题 浏览:746
32位编译器什么意思 浏览:355
php多参数函数 浏览:17
通达信板块动作源码 浏览:751
matlab完全自学一本通pdf 浏览:250
php源码本地安装 浏览:961
服务器怎么用不会断电 浏览:301
主从服务器有什么用 浏览:213
jstlpdf 浏览:15
安卓原神在哪个app下载 浏览:808
单片机编程技术什么意思 浏览:104
e点课堂源码 浏览:46
免费打击垫app哪个好 浏览:532
程序员必装的6款软件 浏览:750
基于单片机的遥控器设计 浏览:521
安卓如何取消圆图标 浏览:11