㈠ python的map和rece和Hadoop的MapRece有什么关系
关系就是都是基于Map-Rece的处理思想设计出来的。
从用户角度看功能其实差不多,
Python的Map函数和Hadoop的Map阶段对输入进行逐行处理;
Python的Rece函数和Hadoop的Rece阶段对输入进行累积处理。
但是其实完整的Hadoop MapRece是Map+Shuffle+Sort+Rece过程。
其中Shuffle过程是为了让分布式机群之间将同Key数据进行互相交换,Sort过程是根据Key对所有数据进行排序,从而才能完成类WordCount功能,而这两步在Python里面当然是需要用户自己去编写的。
㈡ python中map函数的使用
map() 会根据提供的函数对指定序列做映射。
第一个参数 function 以参数序列中的每一个元素调用 function 函数,返回包含每次 function 函数返回值的新列表。 (2)pythonmap映射扩展阅读
map() 函数语法:
map(function, iterable, ...);
参数:
function -- 函数;
iterable -- 一个或多个序列
㈢ python中使用map()和直接使用list()有啥不一样啊
python2 区别不大,python3 map() 返回的是迭代器。
㈣ python中filter和map的区别
li=[11,22,33,44,55,66]
ret=filter(lambdaa:a>33,li)
print(list(ret))
filter是过滤集合中的部分结果
ret2=map(lambdaa:a+100,li)
print(list(ret2))
map是映射每一个元素
㈤ Python map中的函数可以是map吗
map是python内置函数,会根据提供的函数对指定的序列做映射。
_ap()函数的格式是:map(function,iterable,...)
㈥ Python 之内置函数:filter、map、rece、zip、enumerate
这几个函数在 Python 里面被称为高阶函数,本文主要学习它们的用法。
filter 函数原型如下:
第一个参数是判断函数(返回结果需要是 True 或者 False),第二个为序列,该函数将对 iterable 序列依次执行 function(item) 操作,返回结果是过滤之后结果组成的序列。
简单记忆:对序列中的元素进行筛选,获取符合条件的序列。
返回结果为: ,使用 list 函数可以输入序列内容。
map 函数原型如下:
该函数运行之后生成一个 list,第一个参数是函数、第二个参数是一个或多个序列;
下述代码是一个简单的测试案例:
上述代码运行完毕,得到的结果是: 。使用 print(list(my_new_list)) 可以得到结果。
map 函数的第一个参数,可以有多个参数,当这种情况出现后,后面的第二个参数需要是多个序列。
map 函数解决的问题:
rece 函数原型如下:
第一个参数是函数,第二个参数是序列,返回计算结果之后的值。该函数价值在于滚动计算应用于列表中的连续值。
测试代码如下:
最终的结果是 6,如果设置第三个参数为 4,可以运行代码查看结果,最后得到的结论是,第三个参数表示初始值,即累加操作初始的数值。
简单记忆:对序列内所有元素进行累计操作。
zip 函数原型如下:
zip 函数将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。
如果各个迭代器的元素个数不一样,则返回列表长度与最短的对象相同,利用星号( * )操作符,可以将元组解压为列表。
测试代码如下:
展示如何利用 * 操作符:
输出结果如下:
简单记忆:zip 的功能是映射多个容器的相似索引,可以方便用于来构造字典。
enumerate 函数原型如下:
参数说明:
该函数用于将一个可遍历的数据对象组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。
测试代码如下:
返回结果为: 。
本文涉及的函数可以与 lambda 表达式进行结合,能大幅度提高编码效率。最好的学习资料永远是官方手册
㈦ python map函数怎么用啊!
1、对可迭代函数'iterable'中的每一个元素应用‘function’方法,将结果作为list返回。
来个例子:
>>> def add100(x):
... return x+100
...
>>> hh = [11,22,33]
>>> map(add100,hh)
[111, 122, 133]
就像文档中说的:对hh中的元素做了add100,返回了结果的list。
2、如果给出了额外的可迭代参数,则对每个可迭代参数中的元素‘并行’的应用‘function’。(翻译的不好,这里的关键是‘并行’)
>>> def abc(a, b, c):
... return a*10000 + b*100 + c
...
>>> list1 = [11,22,33]
>>> list2 = [44,55,66]
>>> list3 = [77,88,99]
>>> map(abc,list1,list2,list3)
[114477, 225588, 336699]
看到并行的效果了吧!在每个list中,取出了下标相同的元素,执行了abc()。
3、如果'function'给出的是‘None’,自动假定一个‘identity’函数(这个‘identity’不知道怎么解释,看例子吧)
>>> list1 = [11,22,33]
>>> map(None,list1)
[11, 22, 33]
>>> list1 = [11,22,33]
>>> list2 = [44,55,66]
>>> list3 = [77,88,99]
>>> map(None,list1,list2,list3)
[(11, 44, 77), (22, 55, 88), (33, 66, 99)]
㈧ map函数的用法python
map函数的用法如下:
map(func, lst) ,将传⼊的函数变量 func 作⽤到 lst 变量的每个元素中,并将结果组成新的列表 (Python2)/ 迭代器(Python3) 返回。
注意:
map()返回的是一个迭代器,直接打印map()的结果是返回的一个对象。
map函数示例代码:
lst = ['1', '2', '3', '4', '5', '6']
print(lst)
lst_int = map(lambda x: int(x), lst)
# print(list(lst_int))
for i in lst_int:
print(i, end=' ')
print()
print(list(lst_int))
㈨ Python数据结构与算法-哈希map的实现及原理
1-collections.MutableMapping
1.1 概念:这是什么?
大家可能想知道这一串英文是什么意思?其实只需要了解在collections库当中有一个非常重要的抽象基类MutableMappin
g,专门用于实现map的一个非常有价值的工具。后边我们会用到它。
2-我们的map基类
2.1 实现这个类
这个基类其实也就是确定了键值对的属性,并且存储了基本的比较方法。它的对象就是一个键值对咯。这个很好理解。有点类似object的感觉。
3-通过map基类实现的无序映射
给大家看一个上边的例子,这个例子来源于网络,自己改了改,能用,更加详细而已,凑合看.
4-Python哈希表的实现的基类
4.1 咱有话直说:上才(代)艺(码)
如果还不知道哈希表概念的同xio,请参考 python进阶之数据结构与算法–中级-哈希表(小白piao分享) 。废话不多说,咱们撸代码:
OK了,基本的哈希表就实现了,其实仔细想想很容易,但是自己要能实现还是要理解哈希表的本质哦,外加一定量的练习才可以熟练掌握,练习的目的就是为了熟练而已。
5-分离链表实现的具体哈希map类
说明:这玩意只是一种降低冲突的手段,上一节提过,降低冲突最好的地方是发生在元组进入桶的时候,所以想必大家猜到了,接下来的分离链表也就是为了self._bucket_xxxxxxx系列方法做准备。这里之所以在上边使用@abstractmethod就是为了继承实现,目的可以实现多种将冲突的哈希表。分离链表的概念上一节也有的。
“见码入面”(借鉴:见字如面这个电视节目,有兴趣可以看看,还不错的):
6-用线性探测处理冲突的哈希map类
这种方式的好处不需要再去借助其他额外的赋值结构来表示桶。结构更加简单。不会再像上一种方法还要让桶是一个UnsortedTableMap的对象。
代码如下:
㈩ Python中map()问题
map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回。
你传入的 '12345'字符串也是属于列表。每个元素就是 ['1','2','3','4','5']
所以第一个输出的无可厚非。
第二个报错其实原因就是因为你的digits里面没有'1'这个key,所以会报错。
根本不会出现'12345'这个key的。如果想出现,就把代码修改下
defchar(s):
digits={'0':0,'12345':1,'2':2,'3':3,'4':4,'5':5,'6':6,'7':7,'8':8,'9':9}
returndigits[s]
list(map(char,['12345','2','3','4','5']))