导航:首页 > 编程语言 > python多线程计算

python多线程计算

发布时间:2022-12-09 10:53:44

python之多线程

进程的概念:以一个整体的形式暴露给操作系统管理,里面包含各种资源的调用。 对各种资源管理的集合就可以称为进程。
线程的概念:是操作系统能够进行运算调度的最小单位。本质上就是一串指令的集合。

进程和线程的区别:
1、线程共享内存空间,进程有独立的内存空间。
2、线程启动速度快,进程启动速度慢。注意:二者的运行速度是无法比较的。
3、线程是执行的指令集,进程是资源的集合
4、两个子进程之间数据不共享,完全独立。同一个进程下的线程共享同一份数据。
5、创建新的线程很简单,创建新的进程需要对他的父进程进行一次克隆。
6、一个线程可以操作(控制)同一进程里的其他线程,但是进程只能操作子进程
7、同一个进程的线程可以直接交流,两个进程想要通信,必须通过一个中间代理来实现。
8、对于线程的修改,可能会影响到其他线程的行为。但是对于父进程的修改不会影响到子进程。

第一个程序,使用循环来创建线程,但是这个程序中一共有51个线程,我们创建了50个线程,但是还有一个程序本身的线程,是主线程。这51个线程是并行的。注意:这个程序中是主线程启动了子线程。

相比上个程序,这个程序多了一步计算时间,但是我们观察结果会发现,程序显示的执行时间只有0.007秒,这是因为最后一个print函数它存在于主线程,而整个程序主线程和所有子线程是并行的,那么可想而知,在子线程还没有执行完毕的时候print函数就已经执行了,总的来说,这个时间只是执行了一个线程也就是主线程所用的时间。

接下来这个程序,吸取了上面这个程序的缺点,创建了一个列表,把所有的线程实例都存进去,然后使用一个for循环依次对线程实例调用join方法,这样就可以使得主线程等待所创建的所有子线程执行完毕才能往下走。 注意实验结果:和两个线程的结果都是两秒多一点

注意观察实验结果,并没有执行打印task has done,并且程序执行时间极其短。
这是因为在主线程启动子线程前把子线程设置为守护线程。
只要主线程执行完毕,不管子线程是否执行完毕,就结束。但是会等待非守护线程执行完毕
主线程退出,守护线程全部强制退出。皇帝死了,仆人也跟着殉葬
应用的场景 : socket-server

注意:gil只是为了减低程序开发复杂度。但是在2.几的版本上,需要加用户态的锁(gil的缺陷)而在3点几的版本上,加锁不加锁都一样。

下面这个程序是一个典型的生产者消费者模型。
生产者消费者模型是经典的在开发架构中使用的模型
运维中的集群就是生产者消费者模型,生活中很多都是

那么,多线程的使用场景是什么?
python中的多线程实质上是对上下文的不断切换,可以说是假的多线程。而我们知道,io操作不占用cpu,计算占用cpu,那么python的多线程适合io操作密集的任务,比如socket-server,那么cpu密集型的任务,python怎么处理?python可以折中的利用计算机的多核:启动八个进程,每个进程有一个线程。这样就可以利用多进程解决多核问题。

Ⅱ python之多线程原理

并发:逻辑上具备同时处理多个任务的能力。
并行:物理上在同一时刻执行多个并发任务。

举例:开个QQ,开了一个进程,开了微信,开了一个进程。在QQ这个进程里面,传输文字开一个线程、传输语音开了一个线程、弹出对话框又开了一个线程。
总结:开一个软件,相当于开了一个进程。在这个软件运行的过程里,多个工作同时运转,完成了QQ的运行,那么这个多个工作分别有多个线程。

线程和进程之间的区别:

进程在python中的使用,对模块threading进行操作,调用的这个三方库。可以通过 help(threading) 了解其中的方法、变量使用情况。也可以使用 dir(threading) 查看目录结构。

current_thread_num = threading.active_count() # 返回正在运行的线程数量
run_thread_len = len(threading.enumerate()) # 返回正在运行的线程数量
run_thread_list = threading.enumerate() # 返回当前运行线程的列表
t1=threading.Thread(target=dance) #创建两个子线程,参数传递为函数名
t1.setDaemon(True) # 设置守护进程,守护进程:主线程结束时自动退出子线程。
t1.start() # 启动子线程
t1.join() # 等待进程结束 exit()`# 主线程退出,t1子线程设置了守护进程,会自动退出。其他子线程会继续执行。

Ⅲ python多线程

有很多的场景中的事情是同时进行的,比如开车的时候,手和脚共同来驾驶汽车,再比如唱歌跳舞也是同时进行的

结果:

• _thread
• threading(推荐使用)

结果:

threading.enumerate() 可查看当前正在运行的线程

结果:

结果:

结果:

结果: 出现资源竞争导致计算结果不正确

(1)当多个线程几乎同时修改某一个共享数据的时候,需要进行同步控制
(2)线程同步能够保证多个线程安全访问资源,最简单的同步机制是引入互斥锁
(3)互斥锁为资源引入一个状态: 锁定/非锁定
(4)某个线程要更爱共享数据时,先将其锁定,此时资源的状态为"锁定", 其他线程不能更改;直到该线程释放资源,将资源状态变为"非锁定"
(5)互斥锁保证了每次只有一个线程进行写入操作,从而保证了多线程情况下数据的正确性

结果: 计算正确

结果:卡住了

在线程间共享多个资源的时候,如果两个线程分别战友一部分资源且同时等待对方资源,就会造成死锁

(1)程序设计时避免(银行家算法)
(2)添加超时时间

Ⅳ python 怎么实现多线程的

线程也就是轻量级的进程,多线程允许一次执行多个线程,Python是多线程语言,它有一个多线程包,GIL也就是全局解释器锁,以确保一次执行单个线程,一个线程保存GIL并在将其传递给下一个线程之前执行一些操作,也就产生了并行执行的错觉。

Ⅳ python的多线程是否能利用多核计算

比方我有一个4核的CPU,那么这样一来,在单位时间内每个核只能跑一个线程,然后时间片轮转切换。但是Python不一样,它不管你有几个核,单位时间多个核只能跑一个线程,然后时间片轮转。看起来很不可思议?但是这就是GIL搞的鬼。任何Python线程执行前,必须先获得GIL锁,然后,每执行100条字节码,解释器就自动释放GIL锁,让别的线程有机会执行。这个GIL全局锁实际上把所有线程的执行代码都给上了锁,所以,多线程在Python中只能交替执行,即使100个线程跑在100核CPU上,也只能用到1个核。通常我们用的解释器是官方实现的CPython,要真正利用多核,除非重写一个不带GIL的解释器。

Ⅵ python 多线程

python支持多线程效果还不错,很多方面都用到了python 多线程的知识,我前段时间用python 多线程写了个处理生产者和消费者的问题,把代码贴出来给你看下:
#encoding=utf-8
import threading
import random
import time
from Queue import Queue

class Procer(threading.Thread):

def __init__(self, threadname, queue):
threading.Thread.__init__(self, name = threadname)
self.sharedata = queue

def run(self):
for i in range(20):
print self.getName(),'adding',i,'to queue'
self.sharedata.put(i)
time.sleep(random.randrange(10)/10.0)
print self.getName(),'Finished'

# Consumer thread

class Consumer(threading.Thread):

def __init__(self, threadname, queue):
threading.Thread.__init__(self, name = threadname)
self.sharedata = queue

def run(self):

for i in range(20):
print self.getName(),'got a value:',self.sharedata.get()
time.sleep(random.randrange(10)/10.0)
print self.getName(),'Finished'

# Main thread

def main():

queue = Queue()
procer = Procer('Procer', queue)
consumer = Consumer('Consumer', queue)
print 'Starting threads ...'
procer.start()
consumer.start()
procer.join()
consumer.join()
print 'All threads have terminated.'
if __name__ == '__main__':
main()

如果你想要了解更多的python 多线程知识可以点下面的参考资料的地址,希望对有帮助!

Ⅶ Python 的多线程问题。。

python 的GIL规定每个时刻只能有一个线程访问python虚拟机,所以你要用python的多线程来做计算是很不合算的,但是对于IO密集型的应用,例如网络交互来说,python的多线程还是非常给力的。
如果你是一个计算密集型的任务,非要用python来并行执行的话,有以下几个方法:
1 使用python的multiprocessing 模块,能够发挥多核的优势。
2 使用ironPython,但是这个只能在windows下用
3 使用pypy,这个可以实现真正的多线程。

Ⅷ 为什么有人说 Python 的多线程是鸡肋

说这句话的人一定是在网上看到一些资料说,python的多线程不支持多核计算的,几乎不会提高运行效率。其实这句话只是对于CPython。因为CPython中存在GIL锁,每次只能有一个线程可以访问字节码。这样,即便线程再多,即便多核,线程都不可能同时执行,因为字节码一个时刻只能由一个线程访问。

参考官方资料:
Global interpreter lock
The mechanism used by the CPython interpreter to assure that only one thread executes Python bytecode at a time. This simplifies the CPython implementation by making the object model (including critical built-in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it easier for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines.
However, some extension moles, either standard or third-party, are designed so as to release the GIL when doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when doing I/O.
Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer granularity) have not been successful because performance suffered in the common single-processor case. It is believed that overcoming this performance issue would make the implementation much more complicated and therefore costlier to maintain.

Ⅸ python多线程并行计算问题,请大神指点一二,不胜感激

监控一个信号就起一个线程与进程处理。这样的逻辑是不太合适的。所有的资源都是有限的,如果这样浪费很快会资源管理失控。 常规的做法是起一个线程池,或者是进程池。 使用线程还是进程取决于你处理的信号的类型

阅读全文

与python多线程计算相关的资料

热点内容
好久不见app干什么用的 浏览:143
压缩包解压码对方可以更改吗 浏览:254
pdf电子书制作软件 浏览:888
数控三通编程 浏览:300
linux多终端 浏览:811
法律写作pdf 浏览:144
国货哪个品牌最好app 浏览:951
看哪个app给钱最多 浏览:178
编程靠经验吗 浏览:759
c教程pdf下载地址 浏览:573
制作视频哪个app有瘦脸功能 浏览:649
linux查看线程内存 浏览:509
命令行签名apk 浏览:92
网页照片旋转源码 浏览:842
QQ会员头像源码 浏览:263
内核命令行 浏览:324
脚本提取源码器 浏览:930
smo源码 浏览:877
为什么要搭建单独服务器 浏览:480
编译器有什么控制 浏览:893