导航:首页 > 编程语言 > python训练图像识别

python训练图像识别

发布时间:2022-12-12 21:16:56

㈠ .python编程与图像识别课程在调压器上有什么应用

你实习时哪里用到python就是它了。如果你的实习单位里没有相关的工作,那你学python到这里实习的意义何在?
举个通用点的例子,各个企业、工厂都有单据要录入到电脑中,那这里就可以用上python了,找个api,比如网络有图像文字识别,接个摄像头,就可以识别出手工单据中的标头和内容,然后填写到电脑上的电子系统中,这就有了。
要是再有心一点,加上词法识别,把错别字、语句不通顺的找出来,做确认、修改,就更好了。
至于在你实习所在的工厂、行业里,具体的生产和研发环节中怎么能用到你所学的技术,主要就看你自己的花多少心思去思考这个问题以及你对这个行业的了了解深度了。就算是学农业的,去到机场都有机会一展所学,只看有没有认真。

㈡ 利用python做机器学习图像识别要怎么做

你需要的不只是分类算法,还要有 Object Detection,如果想采用深度学习方法的话,建议论文直接从 R-CNN 一直看到 Mask R-CNN,之后如果需要速度就看看 YOLO 和 SSD。
当然如果你看不懂上述论文的话,说明你还是要从头开始学习。

㈢ python中音频图像识别和网页相关的库合集!

1、OpenCV

OpenCV是最常用的图像和视频识别库。毫不夸张地说,OpenCV能让Python在图像和视频识别领域完全替代Matlab。

OpenCV提供各种应用程序接口,同时它不仅支持Python,还支持Java和Matlab。OpenCV出色的处理能力使其在计算机产业和学术研究中都广受好评。

2、Librosa

Librosa是一个非常强大的音频和声音处理Python库。Librosa可以用来从音频段中提取各个部分,例如韵律,节奏以及节拍。

像Laplacia分割这样极度复杂的算法,在使用了Librosa之后只需几行代码就能轻而易举的运用。

Python在被广泛运用于数据科学领域前,曾经可是网页开发领域的宠儿。因此也有很多用于网页开发的库。

3、Django

要想使用Python来开发一个网页服务后端,Django一直都是不二之选。Django的设计理念便是,能用几行代码就建立一个网站的高级框架。

Django直接与大多数知名数据库相连,这样使用者就可以省下建立连接和数据模型开发的时间。Django的使用者只需专注于业务逻辑而不需担心受创建、更新、读取和删除(Create,update,retrieve and delete, CURD)的操控,因为Django是一个由数据库驱动的框架。

4、Flask

Flask是一个用于Python的轻量级网页开发框架。其最宝贵的特点是能够轻而易举地进行能够满足任何需求的定制化处理。

有很多提供网站UI的知名Python库和Python工具都是使用Flask构建的,例如Plotly Dash和Airflow。这些网站之所以使用Flask,正是由于其轻量级的特点。

诚然,还有许多优秀的Python库应当被提及,但上述这些库就足够你研究好一阵子了。人生苦短,及时Python!

更多python知识,请关注python视频教程!!

㈣ python处理图片数据

目录

1.机器是如何存储图像的?

2.在Python中读取图像数据

3.从图像数据中提取特征的方法#1:灰度像素值特征

4.从图像数据中提取特征的方法#2:通道的平均像素值

5.从图像数据中提取特征的方法#3:提取边缘
是一张数字8的图像,仔细观察就会发现,图像是由小方格组成的。这些小方格被称为像素。

但是要注意,人们是以视觉的形式观察图像的,可以轻松区分边缘和颜色,从而识别图片中的内容。然而机器很难做到这一点,它们以数字的形式存储图像。请看下图:

机器以数字矩阵的形式储存图像,矩阵大小取决于任意给定图像的像素数。

假设图像的尺寸为180 x 200或n x m,这些尺寸基本上是图像中的像素数(高x宽)。

这些数字或像素值表示像素的强度或亮度,较小的数字(接近0)表示黑色,较大的数字(接近255)表示白色。通过分析下面的图像,读者就会弄懂到目前为止所学到的知识。

下图的尺寸为22 x 16,读者可以通过计算像素数来验证:

图片源于机器学习应用课程

刚才讨论的例子是黑白图像,如果是生活中更为普遍的彩色呢?你是否认为彩色图像也以2D矩阵的形式存储?

彩色图像通常由多种颜色组成,几乎所有颜色都可以从三原色(红色,绿色和蓝色)生成。

因此,如果是彩色图像,则要用到三个矩阵(或通道)——红、绿、蓝。每个矩阵值介于0到255之间,表示该像素的颜色强度。观察下图来理解这个概念:

图片源于机器学习应用课程

左边有一幅彩色图像(人类可以看到),而在右边,红绿蓝三个颜色通道对应三个矩阵,叠加三个通道以形成彩色图像。

请注意,由于原始矩阵非常大且可视化难度较高,因此这些不是给定图像的原始像素值。此外,还可以用各种其他的格式来存储图像,RGB是最受欢迎的,所以笔者放到这里。读者可以在此处阅读更多关于其他流行格式的信息。

用Python读取图像数据

下面开始将理论知识付诸实践。启动Python并加载图像以观察矩阵:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from skimage.io import imread, imshow
image = imread('image_8_original.png', as_gray=True)
imshow(image)

#checking image shape
image.shape, image

(28,28)

矩阵有784个值,而且这只是整个矩阵的一小部分。用一个LIVE编码窗口,不用离开本文就可以运行上述所有代码并查看结果。

下面来深入探讨本文背后的核心思想,并探索使用像素值作为特征的各种方法。

方法#1:灰度像素值特征

从图像创建特征最简单的方法就是将原始的像素用作单独的特征。

考虑相同的示例,就是上面那张图(数字‘8’),图像尺寸为28×28。

能猜出这张图片的特征数量吗?答案是与像素数相同!也就是有784个。

那么问题来了,如何安排这784个像素作为特征呢?这样,可以简单地依次追加每个像素值从而生成特征向量。如下图所示:

下面来用Python绘制图像,并为该图像创建这些特征:

image = imread('puppy.jpeg', as_gray=True)

image.shape, imshow(image)

(650,450)

该图像尺寸为650×450,因此特征数量应为297,000。可以使用NumPy中的reshape函数生成,在其中指定图像尺寸:

#pixel features

features = np.reshape(image, (660*450))

features.shape, features

(297000,)
array([0.96470588, 0.96470588, 0.96470588, ..., 0.96862745, 0.96470588,
0.96470588])

这里就得到了特征——长度为297,000的一维数组。很简单吧?在实时编码窗口中尝试使用此方法提取特征。

但结果只有一个通道或灰度图像,对于彩色图像是否也可以这样呢?来看看吧!

方法#2:通道的平均像素值

在读取上一节中的图像时,设置了参数‘as_gray = True’,因此在图像中只有一个通道,可以轻松附加像素值。下面删除参数并再次加载图像:

image = imread('puppy.jpeg')
image.shape

(660, 450, 3)

这次,图像尺寸为(660,450,3),其中3为通道数量。可以像之前一样继续创建特征,此时特征数量将是660*450*3 = 891,000。

或者,可以使用另一种方法:

生成一个新矩阵,这个矩阵具有来自三个通道的像素平均值,而不是分别使用三个通道中的像素值。

下图可以让读者更清楚地了解这一思路:

这样一来,特征数量保持不变,并且还能考虑来自图像全部三个通道的像素值。

image = imread('puppy.jpeg')
feature_matrix = np.zeros((660,450))
feature_matrix.shape

(660, 450)

现有一个尺寸为(660×450×3)的三维矩阵,其中660为高度,450为宽度,3是通道数。为获取平均像素值,要使用for循环:

for i in range(0,iimage.shape[0]):
for j in range(0,image.shape[1]):
feature_matrix[i][j] = ((int(image[i,j,0]) + int(image[i,j,1]) + int(image[i,j,2]))/3)

新矩阵具有相同的高度和宽度,但只有一个通道。现在,可以按照与上一节相同的步骤进行操作。依次附加像素值以获得一维数组:

features = np.reshape(feature_matrix, (660*450))
features.shape

(297000,)

方法#3:提取边缘特征

请思考,在下图中,如何识别其中存在的对象:

识别出图中的对象很容易——狗、汽车、还有猫,那么在区分的时候要考虑哪些特征呢?形状是一个重要因素,其次是颜色,或者大小。如果机器也能像这样识别形状会怎么样?

类似的想法是提取边缘作为特征并将其作为模型的输入。稍微考虑一下,要如何识别图像中的边缘呢?边缘一般都是颜色急剧变化的地方,请看下图:

笔者在这里突出了两个边缘。这两处边缘之所以可以被识别是因为在图中,可以分别看到颜色从白色变为棕色,或者由棕色变为黑色。如你所知,图像以数字的形式表示,因此就要寻找哪些像素值发生了剧烈变化。

假设图像矩阵如下:

图片源于机器学习应用课程

该像素两侧的像素值差异很大,于是可以得出结论,该像素处存在显着的转变,因此其为边缘。现在问题又来了,是否一定要手动执行此步骤?

当然不!有各种可用于突出显示图像边缘的内核,刚才讨论的方法也可以使用Prewitt内核(在x方向上)来实现。以下是Prewitt内核:

获取所选像素周围的值,并将其与所选内核(Prewitt内核)相乘,然后可以添加结果值以获得最终值。由于±1已经分别存在于两列之中,因此添加这些值就相当于获取差异。

还有其他各种内核,下面是四种最常用的内核:

图片源于机器学习应用课程

现在回到笔记本,为同一图像生成边缘特征:

#importing the required libraries
import numpy as np
from skimage.io import imread, imshow
from skimage.filters import prewitt_h,prewitt_v
import matplotlib.pyplot as plt
%matplotlib inline

#reading the image
image = imread('puppy.jpeg',as_gray=True)

#calculating horizontal edges using prewitt kernel
edges_prewitt_horizontal = prewitt_h(image)
#calculating vertical edges using prewitt kernel
edges_prewitt_vertical = prewitt_v(image)

imshow(edges_prewitt_vertical, cmap='gray')

㈤ Python如何图像识别

pillow包可以处理图像
pillow:(了解)(python image library)是一个有关图像图片处理的包,这个包底层用的C C++,但PIL包是python2下使用。所以又更新了一个适合python3版本的、基于PIL包的新包pillow。
安装pillow:
pip install pillow
至于识别,那就可能是文字识别或人脸识别。这需要学习很多东西,建议小白还是先把基础学好吧。

㈥ Python如何图像识别

Python图片文本识别使用的工具是PIL和pytesser。因为他们使用到很多的python库文件,为了避免一个个工具的安装,建议使用pythonxy
pytesser是OCR开源项目的一个模块,在Python中导入这个模块即可将图片中的文字转换成文本。pytesser调用了tesseract。当在Python中调用pytesser模块时,pytesser又用tesseract识别图片中的文字。pytesser的使用步骤如下:

首先,安装Python2.7版本,这个版本比较稳定,建议使用这个版本。
其次,安装pythoncv。
然后,安装PIL工具,pytesser的使用需要PIL库的支持。
接着下载pytesser
最后,将pytesser解压,这个是免安装的,可以将解压后的文件cut到Python安装目录的Lib\site-packages下直接使用,比如我的安装目录是:C:\Python27\Lib\site-packages,同时把这个目录添加到环境变量之中。
完成以上步骤之后,就可以编写图片文本识别的Python脚本了。参考脚本如下:
from pytesser import *
import ImageEnhance
image = Image.open('D:\\workspace\\python\\5.png')
#使用ImageEnhance可以增强图片的识别率
enhancer = ImageEnhance.Contrast(image)
image_enhancer = enhancer.enhance(4)
print image_to_string(image_enhancer)

tesseract是谷歌的一个对图片进行识别的开源框架,免费使用,现在已经支持中文,而且识别率非常高,这里简要来个helloworld级别的认识
下载之后进行安装,不再演示。
在tesseract目录下,有个tesseract.exe文件,主要调用这个执行文件,用cmd运行到这个目录下,在这个目录下同时放置一张需要识别的图片,这里是123.jpg
然后运行:tesseract 123.jpg result
会把123.jpg自动识别并转换为txt文件到result.txt
但是此时中文识别不好
然后找到tessdata目录,把eng.traineddata替换为chi_sim.traineddata,并且把chi_sim.traineddata重命名为eng.traineddata
ok,现在中文识别基本达到90%以上了

㈦ Python如何图像识别

1.提取待检索电影的每一帧图像的局部敏感哈希 (Locality Sensitive Hashing; LSH) 特征, 并保存下来, 不妨称为库 (gallery). LSH 特征可以用整型来表示, 一般是6...
2.来了一张查询图像 (query), 也计算它的 LSH 特征. 然后与预先保存下来的库中的每个 LSH 特征都计算 Hamming 距离, 返回库中与查询图像 LSH 特征距离最小 (或距离小于指定阈值) ...

阅读全文

与python训练图像识别相关的资料

热点内容
怎么批量有顺序的命名文件夹 浏览:207
杭州程序员健身 浏览:17
dvd光盘存储汉子算法 浏览:758
苹果邮件无法连接服务器地址 浏览:963
phpffmpeg转码 浏览:672
长沙好玩的解压项目 浏览:145
专属学情分析报告是什么app 浏览:564
php工程部署 浏览:833
android全屏透明 浏览:737
阿里云服务器已开通怎么办 浏览:803
光遇为什么登录时服务器已满 浏览:302
PDF分析 浏览:486
h3c光纤全工半全工设置命令 浏览:143
公司法pdf下载 浏览:383
linuxmarkdown 浏览:350
华为手机怎么多选文件夹 浏览:683
如何取消命令方块指令 浏览:350
风翼app为什么进不去了 浏览:779
im4java压缩图片 浏览:362
数据查询网站源码 浏览:151