⑴ 从零开始学python-使用Selenium抓取动态网页数据
AJAX(Asynchronouse javaScript And XML:异步JavaScript和XML)通过在后台与服务器进行少量数据交换,Ajax 可以使网页实现异步更新,这意味着可以在不重新加载整个网页的情况下,对网页的某部分进行局部更新。传统的网页(不使用Ajax)如果需要更新内容,必须重载整个网页页面。
因为传统的网页在传输数据格式方面,使用的是 XML 语法,因此叫做 AJAX ,其实现在数据交互基本上都是使用 JSON 。使用AJAX加载的数据,即使使用了JS将数据渲染到了浏览器中,在 右键->查看网页源代码 还是不能看到通过ajax加载的数据,只能看到使用这个url加载的html代码。
法1:直接分析ajax调用的接口。然后通过代码请求这个接口。
法2:使用Selenium+chromedriver模拟浏览器行为获取数据。
Selenium 相当于是一个机器人。可以模拟人类在浏览器上的一些行为,自动处理浏览器上的一些行为,比如点击,填充数据,删除cookie等。 chromedriver 是一个驱动 Chrome 浏览器的驱动程序,使用他才可以驱动浏览器。当然针对不同的浏览器有不同的driver。以下列出了不同浏览器及其对应的driver:
现在以一个简单的获取网络首页的例子来讲下 Selenium 和 chromedriver 如何快速入门:
参考:Selenium的使用
直接直接分析ajax调用的接口爬取
selenium结合lxml爬取
⑵ 如何用Python爬虫抓取网页内容
首先,你要安装requests和BeautifulSoup4,然后执行如下代码.
importrequests
frombs4importBeautifulSoup
iurl='http://news.sina.com.cn/c/nd/2017-08-03/doc-ifyitapp0128744.shtml'
res=requests.get(iurl)
res.encoding='utf-8'
#print(len(res.text))
soup=BeautifulSoup(res.text,'html.parser')
#标题
H1=soup.select('#artibodyTitle')[0].text
#来源
time_source=soup.select('.time-source')[0].text
#来源
origin=soup.select('#artibodyp')[0].text.strip()
#原标题
oriTitle=soup.select('#artibodyp')[1].text.strip()
#内容
raw_content=soup.select('#artibodyp')[2:19]
content=[]
forparagraphinraw_content:
content.append(paragraph.text.strip())
'@'.join(content)
#责任编辑
ae=soup.select('.article-editor')[0].text
这样就可以了
⑶ 如何用python抓取这个网页的内容
如果包含动态内容可以考虑使用Selenium浏览器自动化测试框架,当然找人有偿服务也可以
⑷ 如何用python抓取网页数据库
最简单可以用urllib,python2.x和python3.x的用法不同,以python2.x为例:
import
urllib
html
=
urllib.open(url)
text
=
html.read()
复杂些可以用requests库,支持各种请求类型,支持cookies,header等
再复杂些的可以用selenium,支持抓取javascript产生的文本
⑸ python如何读取网页中的数据
用Beautiful Soup这类解析模块:
Beautiful Soup 是用Python写的一个HTML/XML的解析器,它可以很好的处理不规范标记并生成剖析树(parse tree);
它提供简单又常用的导航(navigating),搜索以及修改剖析树的操作;
用urllib或者urllib2(推荐)将页面的html代码下载后,用beautifulsoup解析该html;
然后用beautifulsoup的查找模块或者正则匹配将你想获得的内容找出来,就可以进行相关处理了,例如:
html='<html><head><title>test</title></head><body><p>testbody</p></body></html>'
soup=BeautifulSoup(html)
soup.contents[0].name
#u'html'
soup.comtents[0].contents[0].name
#u'head'
head=soup.comtents[0].contents[0]
head.parent.name
#u'html'
head.next
#u'<title>test</title>
⑹ python怎样抓取网页中的文字和数字数据
通过xpath路径来定位到要提取的元素,在路径后面加上/text()可以提取该元素的文本,如果是要提取属性值,在路径后面加上/@属性名就可以。如果要只采集数字或者文字,可以使用正则来实现。比如数字的正字表达式:[0-9]+。希望可以帮到题主
⑺ python爬取大量数据(百万级)
当用python爬取大量网页获取想要的数据时,最重要的问题是爬虫中断问题,python这种脚本语言,一中断
进程就会退出,怎么在中断后继续上次爬取的任务就至关重要了。这里就重点剖析这个中断问题。
第一个问题: 简单点的用动态代理池就能解决,在爬取大量数据的时候,为了速度不受影响,建议使用一些缓
存的中间件将有效的代理 ip 缓存起来,并定时更新。这里推荐 github 这个仓库
https://github.com/jhao104/proxy_pool , 它会做ip有效性验证并将 ip 放入 redis ,不过实现过于复杂
了,还用到了 db ,个人觉得最好自己修改一下。困难点的就是它会使用别的请求来进行判断当前的ip是否
是爬虫,当我们过于聚焦我们的爬虫请求而忽略了其他的请求时,可能就会被服务器判定为爬虫,进而这个ip
会被列入黑名单,而且你换了ip一样也会卡死在这里。这种方式呢,简单点就用 selenium + chrome 一个一个
去爬,不过速度太慢了。还是自己去分析吧,也不会过复杂的。
第二个问题: 网络连接超时是大概率会遇到的问题,有可能是在爬取的时候本地网络波动,也有可能是爬
取的服务端对ip做了限制,在爬取到了一定量级的时候做一些延迟的操作,使得一些通用的 http 库超时
( urllib )。不过如果是服务端动的手脚一般延迟不会太高,我们只需要人为的设置一个高一点的
timeout 即可(30 秒),最好在爬取开始的时候就对我们要用的爬取库进行一层封装,通用起来才好改
动。
第三个问题: 在解析大量静态页面的时候,有些静态页面的解析规则不一样,所以我们就必须得做好断点
续爬的准备了( PS : 如果简单的忽略错误可能会导致大量数据的丢失,这就不明智了)。那么在调试的过
程中断点续爬有个解决方案,就是生产者和消费者分离,生产者就是产生待爬 url 的爬虫,消费者就是爬取
最终数据的爬虫。最终解析数据就是消费者爬虫了。他们通过消息中间件连接,生产者往消息中间件发送待
爬取的目标信息,消费者从里面取就行了,还间接的实现了个分布式爬取功能。由于现在的消费中间件都有
ack 机制,一个消费者爬取链接失败会导致消息消费失败,进而分配给其他消费者消费。所以消息丢失的
概率极低。不过这里还有个 tips , 消费者的消费超时时间不能太长,会导致消息释放不及时。还有要开启
消息中间价的数据持久化功能,不然消息产生过多而消费不及时会撑爆机器内存。那样就得不偿失了。
第四个问题: 这种情况只能 try except catch 住了,不好解决,如果单独分析的话会耗费点时间。但在
大部分数据 (99%) 都正常的情况下就这条不正常抛弃就行了。主要有了第三个问题的解决方案再出现这
种偶尔中断的问就方便多了。
希望能帮到各位。
⑻ 【Python爬虫】分析网页真实请求
1、抓取网页、分析请求
2、解析网页、寻找数据
3、储存数据、多页处理
翻页有规律:
很多网址在第一页时并没有变化,多翻下一页后规律就出来,比如 豆瓣第一页 和 豆瓣第三页
发现start为40,limit=20,所以猜测start=0就是第一页,每页显示20条数据,对于第三页显示的参数可以一个个删除验证,可以减去不必要的参数, 但是删除前一定要做好数据的对比
(1) 文本框输入后产生一个请求,如常见的登录、注册页面
Referer:表示当前请求的来源
Request URL:表示实际请求地址
翻页后URL不变,该如何寻找请求?
如: http://www.zkh360.com/zkh_catalog/3.html
通过对比可以发现网站是通过pageIndex参数控制翻页的,?表示连接
接下来用抓包工具分析下 ,从第四页开始看URL就知道了,但是前面几面需要查看请求的参数,这里偏多,就切换到【Inspectors--Webforms】选项,看的比较直观
类似的网站还有 今日头条 ,有兴趣的朋友可以去研究下
(可通过获取max_behot_time的值而改变as和cp)
⑼ 如何用python抓取网页数据
用 requests 库构造请求;
用 pyquery 库解析网页;
用 sqlalchemy 存储数据。
有这3个库,基本上的网页都可以抓取了。
也可以用scrapy,但是太复杂,一个的学习成本大于前三个之和