❶ python之多线程原理
并发:逻辑上具备同时处理多个任务的能力。
并行:物理上在同一时刻执行多个并发任务。
举例:开个QQ,开了一个进程,开了微信,开了一个进程。在QQ这个进程里面,传输文字开一个线程、传输语音开了一个线程、弹出对话框又开了一个线程。
总结:开一个软件,相当于开了一个进程。在这个软件运行的过程里,多个工作同时运转,完成了QQ的运行,那么这个多个工作分别有多个线程。
线程和进程之间的区别:
进程在python中的使用,对模块threading进行操作,调用的这个三方库。可以通过 help(threading) 了解其中的方法、变量使用情况。也可以使用 dir(threading) 查看目录结构。
current_thread_num = threading.active_count() # 返回正在运行的线程数量
run_thread_len = len(threading.enumerate()) # 返回正在运行的线程数量
run_thread_list = threading.enumerate() # 返回当前运行线程的列表
t1=threading.Thread(target=dance) #创建两个子线程,参数传递为函数名
t1.setDaemon(True) # 设置守护进程,守护进程:主线程结束时自动退出子线程。
t1.start() # 启动子线程
t1.join() # 等待进程结束 exit()`# 主线程退出,t1子线程设置了守护进程,会自动退出。其他子线程会继续执行。
❷ python多线程全局变量和锁
1.python中数据类型,int,float,复数,字符,元组,做全局变量时需要在函数里面用global申明变量,才能对变量进行操作。
而,对象,列表,词典,不需要声明,直接就是全局的。
2.线程锁mutex=threading.Lock()
创建后就是全局的。线程调用函数可以直接在函数中使用。
mutex.acquire()开启锁
mutex=release()关闭锁
要注意,死锁的情况发生。
注意运行效率的变化:
正常1秒,完成56997921
加锁之后,1秒只运行了531187,相差10倍多。
3.继承.threading.Thread的类,无法调用__init__函数,无法在创建对象时初始化新建的属性。
4.线程在cpu的执行,有随机性
5. 新建线程时,需要传参数时,args是一个元组,如果只有一个参数,一定后面要加一个,符号。不能只有一个参数否则线程会报创建参数错误。threading.Thread(target=fuc,args=(arg,))
❸ Python面试题,线程与进程的区别,Python中如何创建多线程
进程和线程这两个概念属于操作系统,我们经常听说,但是可能很少有人会细究它们的含义。对于工程师而言,两者的定义和区别还是很有必要了解清楚的。
首先说进程,进程可以看成是 CPU执行的具体的任务 。在操作系统当中,由于CPU的运行速度非常快,要比计算机当中的其他设备要快得多。比如内存、磁盘等等,所以如果CPU一次只执行一个任务,那么会导致CPU大量时间在等待这些设备,这样操作效率很低。为了提升计算机的运行效率,把机器的技能尽可能压榨出来,CPU是轮询工作的。也就是说 它一次只执行一个任务,执行一小段碎片时间之后立即切换 ,去执行其他任务。
所以在早期的单核机器的时候,看起来电脑也是并发工作的。我们可以一边听歌一边上网,也不会觉得卡顿。但实际上,这是CPU轮询的结果。在这个例子当中,听歌的软件和上网的软件对于CPU而言都是 独立的进程 。我们可以把进程简单地理解成运行的应用,比如在安卓手机里面,一个app启动的时候就会对应系统中的一个进程。当然这种说法不完全准确, 一个应用也是可以启动多个进程的 。
进程是对应CPU而言的,线程则更多针对的是程序。即使是CPU在执行当前进程的时候,程序运行的任务其实也是有分工的。举个例子,比如听歌软件当中,我们需要显示歌词的字幕,需要播放声音,需要监听用户的行为,比如是否发生了切歌、调节音量等等。所以,我们需要 进一步拆分CPU的工作 ,让它在执行当前进程的时候,继续通过轮询的方式来同时做多件事情。
进程中的任务就是线程,所以从这点上来说, 进程和线程是包含关系 。一个进程当中可以包含多个线程,对于CPU而言,不能直接执行线程,一个线程一定属于一个进程。所以我们知道,CPU进程切换切换的是执行的应用程序或者是软件,而进程内部的线程切换,切换的是软件当中具体的执行任务。
关于进程和线程有一个经典的模型可以说明它们之间的关系,假设CPU是一家工厂,工厂当中有多个车间。不同的车间对应不同的生产任务,有的车间生产汽车轮胎,有的车间生产汽车骨架。但是工厂的电力是有限的,同时只能满足一个厂房的使用。
为了让大家的进度协调,所以工厂需要轮流提供各个车间的供电。 这里的车间对应的就是进程 。
一个车间虽然只生产一种产品,但是其中的工序却不止一个。一个车间可能会有好几条流水线,具体的生产任务其实是流水线完成的,每一条流水线对应一个具体执行的任务。但是同样的, 车间同一时刻也只能执行一条流水线 ,所以我们需要车间在这些流水线之间切换供电,让各个流水线生产进度统一。
这里车间里的 流水线自然对应的就是线程的概念 ,这个模型很好地诠释了CPU、进程和线程之间的关系。实际的原理也的确如此,不过CPU中的情况要比现实中的车间复杂得多。因为对于进程和CPU来说,它们面临的局面都是实时变化的。车间当中的流水线是x个,下一刻可能就成了y个。
了解完了线程和进程的概念之后,对于理解电脑的配置也有帮助。比如我们买电脑,经常会碰到一个术语,就是这个电脑的CPU是某某核某某线程的。比如我当年买的第一台笔记本是4核8线程的,这其实是在说这台电脑的CPU有 4个计算核心 ,但是使用了超线程技术,使得可以把一个物理核心模拟成两个逻辑核心。相当于我们可以用4个核心同时执行8个线程,相当于8个核心同时执行,但其实有4个核心是模拟出来的虚拟核心。
有一个问题是 为什么是4核8线程而不是4核8进程呢 ?因为CPU并不会直接执行进程,而是执行的是进程当中的某一个线程。就好像车间并不能直接生产零件,只有流水线才能生产零件。车间负责的更多是资源的调配,所以教科书里有一句非常经典的话来诠释: 进程是资源分配的最小单元,线程是CPU调度的最小单元 。
启动线程Python当中为我们提供了完善的threading库,通过它,我们可以非常方便地创建线程来执行多线程。
首先,我们引入threading中的Thread,这是一个线程的类,我们可以通过创建一个线程的实例来执行多线程。
from threading import Thread t = Thread(target=func, name='therad', args=(x, y)) t.start()简单解释一下它的用法,我们传入了三个参数,分别是 target,name和args ,从名字上我们就可以猜测出它们的含义。首先是target,它传入的是一个方法,也就是我们希望多线程执行的方法。name是我们为这个新创建的线程起的名字,这个参数可以省略,如果省略的话,系统会为它起一个系统名。当我们执行Python的时候启动的线程名叫MainThread,通过线程的名字我们可以做区分。args是会传递给target这个函数的参数。
我们来举个经典的例子:
import time, threading # 新线程执行的代码: def loop(n): print('thread %s is running...' % threading.current_thread().name) for i in range(n): print('thread %s >>> %s' % (threading.current_thread().name, i)) time.sleep(5) print('thread %s ended.' % threading.current_thread().name) print('thread %s is running...' % threading.current_thread().name) t = threading.Thread(target=loop, name='LoopThread', args=(10, )) t.start() print('thread %s ended.' % threading.current_thread().name)我们创建了一个非常简单的loop函数,用来执行一个循环来打印数字,我们每次打印一个数字之后这个线程会睡眠5秒钟,所以我们看到的结果应该是每过5秒钟屏幕上多出一行数字。
我们在Jupyter里执行一下:
表面上看这个结果没毛病,但是其实有一个问题,什么问题呢? 输出的顺序不太对 ,为什么我们在打印了第一个数字0之后,主线程就结束了呢?另外一个问题是,既然主线程已经结束了, 为什么Python进程没有结束 , 还在向外打印结果呢?
因为线程之间是独立的,对于主线程而言,它在执行了t.start()之后,并 不会停留,而是会一直往下执行一直到结束 。如果我们不希望主线程在这个时候结束,而是阻塞等待子线程运行结束之后再继续运行,我们可以在代码当中加上t.join()这一行来实现这点。
t.start() t.join() print('thread %s ended.' % threading.current_thread().name)join操作可以让主线程在join处挂起等待,直到子线程执行结束之后,再继续往下执行。我们加上了join之后的运行结果是这样的:
这个就是我们预期的样子了,等待子线程执行结束之后再继续。
我们再来看第二个问题,为什么主线程结束的时候,子线程还在继续运行,Python进程没有退出呢?这是因为默认情况下我们创建的都是用户级线程,对于进程而言, 会等待所有用户级线程执行结束之后才退出 。这里就有了一个问题,那假如我们创建了一个线程尝试从一个接口当中获取数据,由于接口一直没有返回,当前进程岂不是会永远等待下去?
这显然是不合理的,所以为了解决这个问题,我们可以把创建出来的线程设置成 守护线程 。
守护线程守护线程即daemon线程,它的英文直译其实是后台驻留程序,所以我们也可以理解成 后台线程 ,这样更方便理解。daemon线程和用户线程级别不同,进程不会主动等待daemon线程的执行, 当所有用户级线程执行结束之后即会退出。进程退出时会kill掉所有守护线程 。
我们传入daemon=True参数来将创建出来的线程设置成后台线程:
t = threading.Thread(target=loop, name='LoopThread', args=(10, ), daemon=True)这样我们再执行看到的结果就是这样了:
这里有一点需要注意,如果你 在jupyter当中运行是看不到这样的结果的 。因为jupyter自身是一个进程,对于jupyter当中的cell而言,它一直是有用户级线程存活的,所以进程不会退出。所以想要看到这样的效果,只能通过命令行执行Python文件。
如果我们想要等待这个子线程结束,就必须通过join方法。另外,为了预防子线程锁死一直无法退出的情况, 我们还可以 在joih当中设置timeout ,即最长等待时间,当等待时间到达之后,将不再等待。
比如我在join当中设置的timeout等于5时,屏幕上就只会输出5个数字。
另外,如果没有设置成后台线程的话,设置timeout虽然也有用,但是 进程仍然会等待所有子线程结束 。所以屏幕上的输出结果会是这样的:
虽然主线程继续往下执行并且结束了,但是子线程仍然一直运行,直到子线程也运行结束。
关于join设置timeout这里有一个坑,如果我们只有一个线程要等待还好,如果有多个线程,我们用一个循环将它们设置等待的话。那么 主线程一共会等待N * timeout的时间 ,这里的N是线程的数量。因为每个线程计算是否超时的开始时间是上一个线程超时结束的时间,它会等待所有线程都超时,才会一起终止它们。
比如我这样创建3个线程:
ths = [] for i in range(3): t = threading.Thread(target=loop, name='LoopThread' + str(i), args=(10, ), daemon=True) ths.append(t) for t in ths: t.start() for t in ths: t.join(2)最后屏幕上输出的结果是这样的:
所有线程都存活了6秒。
总结在今天的文章当中,我们一起简单了解了 操作系统当中线程和进程的概念 ,以及Python当中如何创建一个线程,以及关于创建线程之后的相关使用。
多线程在许多语言当中都是至关重要的,许多场景下必定会使用到多线程。比如 web后端,比如爬虫,再比如游戏开发 以及其他所有需要涉及开发ui界面的领域。因为凡是涉及到ui,必然会需要一个线程单独渲染页面,另外的线程负责准备数据和执行逻辑。因此,多线程是专业程序员绕不开的一个话题,也是一定要掌握的内容之一。
❹ Python多线程是什么意思
多线程能让你像运行一个独立的程序一样运行一段长代码。这有点像调用子进程(subprocess),不过区别是你调用shu的是一个函数或者一个类,而不是独立的程序。
程基本上是一个独立执行流程。单个进程可以由多个线程组成。程序中的每个线程都执行特定的任务。例如,当你在电脑上玩游戏时,比如说国际足联,整个游戏是一个单一的过程。,但它由几个线程组成,负责播放音乐、接收用户的输入、同步运行对手等。所有这些都是单独的线程,负责在同一个程序中执行这些不同的任务。
每个进程都有一个始终在运行的线程。这是主线。这个主线程实际上创建子线程对象。子线程也由主线程启动。
❺ 请教python如何开启多线程
可以定义函数把这些代码放在不同的函数里,然后threading模块
import threading
th1 = threading.Thread(target=func1, args=(arg1, arg2, ...))
照这样再定义别的线程,开启用Thread类的start方法
th1.start(); th2.start(); ...
❻ python 可以先创建多进程,然后再个每个子进程创建多个线程吗
可以的,创建多进程用subprocess库,也可以直接os.fork来创建
多线程用threading库,这个比较简单,随便一搜就好多内容啦。
❼ python之多线程
进程的概念:以一个整体的形式暴露给操作系统管理,里面包含各种资源的调用。 对各种资源管理的集合就可以称为进程。
线程的概念:是操作系统能够进行运算调度的最小单位。本质上就是一串指令的集合。
进程和线程的区别:
1、线程共享内存空间,进程有独立的内存空间。
2、线程启动速度快,进程启动速度慢。注意:二者的运行速度是无法比较的。
3、线程是执行的指令集,进程是资源的集合
4、两个子进程之间数据不共享,完全独立。同一个进程下的线程共享同一份数据。
5、创建新的线程很简单,创建新的进程需要对他的父进程进行一次克隆。
6、一个线程可以操作(控制)同一进程里的其他线程,但是进程只能操作子进程
7、同一个进程的线程可以直接交流,两个进程想要通信,必须通过一个中间代理来实现。
8、对于线程的修改,可能会影响到其他线程的行为。但是对于父进程的修改不会影响到子进程。
第一个程序,使用循环来创建线程,但是这个程序中一共有51个线程,我们创建了50个线程,但是还有一个程序本身的线程,是主线程。这51个线程是并行的。注意:这个程序中是主线程启动了子线程。
相比上个程序,这个程序多了一步计算时间,但是我们观察结果会发现,程序显示的执行时间只有0.007秒,这是因为最后一个print函数它存在于主线程,而整个程序主线程和所有子线程是并行的,那么可想而知,在子线程还没有执行完毕的时候print函数就已经执行了,总的来说,这个时间只是执行了一个线程也就是主线程所用的时间。
接下来这个程序,吸取了上面这个程序的缺点,创建了一个列表,把所有的线程实例都存进去,然后使用一个for循环依次对线程实例调用join方法,这样就可以使得主线程等待所创建的所有子线程执行完毕才能往下走。 注意实验结果:和两个线程的结果都是两秒多一点
注意观察实验结果,并没有执行打印task has done,并且程序执行时间极其短。
这是因为在主线程启动子线程前把子线程设置为守护线程。
只要主线程执行完毕,不管子线程是否执行完毕,就结束。但是会等待非守护线程执行完毕
主线程退出,守护线程全部强制退出。皇帝死了,仆人也跟着殉葬
应用的场景 : socket-server
注意:gil只是为了减低程序开发复杂度。但是在2.几的版本上,需要加用户态的锁(gil的缺陷)而在3点几的版本上,加锁不加锁都一样。
下面这个程序是一个典型的生产者消费者模型。
生产者消费者模型是经典的在开发架构中使用的模型
运维中的集群就是生产者消费者模型,生活中很多都是
那么,多线程的使用场景是什么?
python中的多线程实质上是对上下文的不断切换,可以说是假的多线程。而我们知道,io操作不占用cpu,计算占用cpu,那么python的多线程适合io操作密集的任务,比如socket-server,那么cpu密集型的任务,python怎么处理?python可以折中的利用计算机的多核:启动八个进程,每个进程有一个线程。这样就可以利用多进程解决多核问题。
❽ Python多线程是什么意思
几乎所有的操作系统都支持同时运行多个任务,一个任务通常就是一个程序,所有运行中的任务都对应一个进程。即当一个程序进入内存运行时,即变成一个进程。进程就是处于运行过程中的程序,并且具有一定的独立功能。进程是系统进行资源分配调度的一个独立单位,当一个程序运行时,内部可能包含多个顺序执流,每个顺序执行流就是一个线程。
1、线程在程序中是独立的,并发的执行流,划分尺度小于进程,所有多线程程序的并发性高;
2、进程在执行过程中拥有独立的内存单元,而多个线程共享内存,可以极大地提高进程程序的运行效率;
3、线程比进程具有更高的性能,由于同一个进程中的线程都有共性,多个线程共享同一个进程的虚拟空间,可以很容易实现通信。操作系统在创建进程中,必须为该进程分配独立内存空间,分配大量相关资源,但创建线程则简单得多。
❾ Python多线程总结
在实际处理数据时,因系统内存有限,我们不可能一次把所有数据都导出进行操作,所以需要批量导出依次操作。为了加快运行,我们会采用多线程的方法进行数据处理, 以下为我总结的多线程批量处理数据的模板:
主要分为三大部分:
共分4部分对多线程的内容进行总结。
先为大家介绍线程的相关概念:
在飞车程序中,如果没有多线程,我们就不能一边听歌一边玩飞车,听歌与玩 游戏 不能并行;在使用多线程后,我们就可以在玩 游戏 的同时听背景音乐。在这个例子中启动飞车程序就是一个进程,玩 游戏 和听音乐是两个线程。
Python 提供了 threading 模块来实现多线程:
因为新建线程系统需要分配资源、终止线程系统需要回收资源,所以如果可以重用线程,则可以减去新建/终止的开销以提升性能。同时,使用线程池的语法比自己新建线程执行线程更加简洁。
Python 为我们提供了 ThreadPoolExecutor 来实现线程池,此线程池默认子线程守护。它的适应场景为突发性大量请求或需要大量线程完成任务,但实际任务处理时间较短。
其中 max_workers 为线程池中的线程个数,常用的遍历方法有 map 和 submit+as_completed 。根据业务场景的不同,若我们需要输出结果按遍历顺序返回,我们就用 map 方法,若想谁先完成就返回谁,我们就用 submit+as_complete 方法。
我们把一个时间段内只允许一个线程使用的资源称为临界资源,对临界资源的访问,必须互斥的进行。互斥,也称间接制约关系。线程互斥指当一个线程访问某临界资源时,另一个想要访问该临界资源的线程必须等待。当前访问临界资源的线程访问结束,释放该资源之后,另一个线程才能去访问临界资源。锁的功能就是实现线程互斥。
我把线程互斥比作厕所包间上大号的过程,因为包间里只有一个坑,所以只允许一个人进行大号。当第一个人要上厕所时,会将门上上锁,这时如果第二个人也想大号,那就必须等第一个人上完,将锁解开后才能进行,在这期间第二个人就只能在门外等着。这个过程与代码中使用锁的原理如出一辙,这里的坑就是临界资源。 Python 的 threading 模块引入了锁。 threading 模块提供了 Lock 类,它有如下方法加锁和释放锁:
我们会发现这个程序只会打印“第一道锁”,而且程序既没有终止,也没有继续运行。这是因为 Lock 锁在同一线程内第一次加锁之后还没有释放时,就进行了第二次 acquire 请求,导致无法执行 release ,所以锁永远无法释放,这就是死锁。如果我们使用 RLock 就能正常运行,不会发生死锁的状态。
在主线程中定义 Lock 锁,然后上锁,再创建一个子 线程t 运行 main 函数释放锁,结果正常输出,说明主线程上的锁,可由子线程解锁。
如果把上面的锁改为 RLock 则报错。在实际中设计程序时,我们会将每个功能分别封装成一个函数,每个函数中都可能会有临界区域,所以就需要用到 RLock 。
一句话总结就是 Lock 不能套娃, RLock 可以套娃; Lock 可以由其他线程中的锁进行操作, RLock 只能由本线程进行操作。
❿ python 怎么实现多线程的
线程也就是轻量级的进程,多线程允许一次执行多个线程,Python是多线程语言,它有一个多线程包,GIL也就是全局解释器锁,以确保一次执行单个线程,一个线程保存GIL并在将其传递给下一个线程之前执行一些操作,也就产生了并行执行的错觉。