导航:首页 > 编程语言 > python代码自己迭代

python代码自己迭代

发布时间:2022-12-18 14:49:48

‘壹’ 牛顿迭代法的python代码

Python代码以实例展示求解f(x) = (x-3)**3,f(x) = 0 的根。def f(x):
return (x-3)**3 ’''定义f(x) = (x-3)**3'''
def fd(x):
return 3*((x-3)**2) ’''定义f'(x) = 3*((x-3)**2)
def newtonMethod(n,assum):
time = n
x = assum
Next = 0
A = f(x)
B = fd(x)
print('A = ' + str(A) + ',B = ' + str(B) + ',time = ' + str(time))
if f(x) == 0.0:
return time,x
else:
Next = x - A/B
print('Next x = '+ str(Next))
if A == f(Next): print('Meet f(x) = 0,x = ' + str(Next)) ’''设置迭代跳出条件,同时输出满足f(x) = 0的x值'''
else:
returnnewtonMethod(n+1,Next)
newtonMethod(0,4.0) ’''设置从0开始计数,x0 = 4.0'''

‘贰’ Python基础之迭代器

一.什么是迭代器

迭代器是用来迭代取值的工具。

而涉及到把多个值循环取出来的类型有:列表,字符串,元组,字段,集合,打开文件等。通过使用的遍历方式有for···in···,while等,但是,这些方式只适用于有索引的数据类型。为了解决索引取的局限性,python提供了一种 不依赖于索引的取值方式:迭代器

注意:

二.可迭代对象

可迭代对象:但凡内置有__iter__方法的都称为可迭代对象

常见的可迭代对象:

1.集合数据类型,如list,tuple,dict,set,str等

2.生成器,包括生成器和带yield的生成器函数。

三.如何创建迭代器

迭代器是一个包含数个值的对象。

迭代器是可以迭代的对象,这意味着您可以遍历所有值。

从技术上讲,在Python中,迭代器是实现迭代器协议的对象,该协议由方法 __iter__() 和 __next__() 组成。

简而言之,一个类里面实现了__iter__()和__next__()这两个魔法方法,那么这个类的对象就是可迭代对象。

四.迭代器的优缺点

1.优点

2.缺点

五.迭代器示例

另外,如果类Stu继承了Iterator,那么Stu可以不用实现__iter__()方法

遍历迭代器

StopIteration

如果你有足够的 next() 语句,或者在 for 循环中使用,则上面的例子将永远进行下去。

为了防止迭代永远进行,我们可以使用 StopIteration 语句。

在 __next__() 方法中,如果迭代完成指定的次数,我们可以添加一个终止条件来引发错误

‘叁’ Python中什么是迭代

如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。

在Python中,迭代是通过for ... in来完成的,而很多语言比如C或者Java,迭代list是通过下标完成的,比如Java代码:

for (i=0; i<list.length; i++) { n = list[i];
}

可以看出,Python的for循环抽象程度要高于Java的for循环,因为Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。

list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:

>>> d = {'a': 1, 'b': 2, 'c': 3}>>> for key in d:... print(key)
...
a
c
b

因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。

默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时迭代key和value,可以用for k, v in d.items()。

由于字符串也是可迭代对象,因此,也可以作用于for循环:

>>> for ch in 'ABC':... print(ch)
...
A
B
C

所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。

这个网站有很多Python的系统、基础教程,可以看看。网页链接

‘肆’ Python里面怎么给自己的类自定义迭代器方法

迭代器的用法在 Python 中普遍而且统一。在后台,for 语句在容器对象中调用 iter() 。 该函数返回一个定义了 next() 方法的迭代器对象,它在容器中逐一访问元素。没有后续的元素时,next() 抛出一个 StopIteration 异常通知 for 语句循环结束。
了解了迭代器协议的后台机制,就可以很容易的给自己的类添加迭代器行为。定义一个 __iter__() 方法,使其返回一个带有 next() 方法的对象。如果这个类已经定义了 next(),那么 __iter__() 只需要返回self。
以下是其工作原理的示例:
Python代码

classReverse:
""
def__init__(self,data):
self.data=data
self.index=len(data)
def__iter__(self):
returnself
defnext(self):
ifself.index==0:
raiseStopIteration
self.index=self.index-1
returnself.data[self.index]
Python代码
forcharinReverse('spam'):
printchar

希望能帮到你!

‘伍’ Python中的“迭代”详解

迭代器模式:一种惰性获取数据项的方式,即按需一次获取一个数据项。

所有序列都是可以迭代的。我们接下来要实现一个 Sentence(句子)类,我们向这个类的构造方法传入包含一些文本的字符串,然后可以逐个单词迭代。

接下来测试 Sentence 实例能否迭代

序列可以迭代的原因:

iter()

解释器需要迭代对象 x 时,会自动调用iter(x)。

内置的 iter 函数有以下作用:

由于序列都实现了 __getitem__ 方法,所以都可以迭代。

可迭代对象:使用内置函数 iter() 可以获取迭代器的对象。

与迭代器的关系:Python 从可迭代对象中获取迭代器。

下面用for循环迭代一个字符串,这里字符串 'abc' 是可迭代的对象,用 for 循环迭代时是有生成器,只是 Python 隐藏了。

如果没有 for 语句,使用 while 循环模拟,要写成下面这样:

Python 内部会处理 for 循环和其他迭代上下文(如列表推导,元组拆包等等)中的 StopIteration 异常。

标准的迭代器接口有两个方法:

__next__ :返回下一个可用的元素,如果没有元素了,抛出 StopIteration 异常。

__iter__ :返回 self,以便在需要使用可迭代对象的地方使用迭代器,如 for 循环中。

迭代器:实现了无参数的 __next__ 方法,返回序列中的下一个元素;如果没有元素了,那么抛出 StopIteration 异常。Python 中的迭代器还实现了 __iter__ 方法,因此迭代器也可以迭代。

接下来使用迭代器模式实现 Sentence 类:

注意, 不要 在 Sentence 类中实现 __next__ 方法,让 Sentence 实例既是可迭代对象,也是自身的迭代器。

为了“支持多种遍历”,必须能从同一个可迭代的实例中获取多个独立的迭代器,而且各个迭代器要能维护自身的内部状态,因此这一模式正确的实现方式是,每次调用 iter(my_iterable) 都新建一个独立的迭代器。

所以总结下来就是:

实现相同功能,但却符合 Python 习惯的方式是,用生成器函数代替 SentenceIteror 类。

只要 Python 函数的定义体中有 yield 关键字,该函数就是生成器函数。调用生成器函数,就会返回一个生成器对象。

生成器函数会创建一个生成器对象,包装生成器函数的定义体,把生成器传给 next(...) 函数时,生成器函数会向前,执行函数定义体中的下一个 yield 语句,返回产出的值,并在函数定义体的当前位置暂停,。最终,函数的定义体返回时,外层的生成器对象会抛出 StopIteration 异常,这一点与迭代器协议一致。

如今这一版 Sentence 类相较之前简短多了,但是还不够慵懒。 惰性 ,是如今人们认为最好的特质。惰性实现是指尽可能延后生成值,这样做能节省内存,或许还能避免做无用的处理。

目前实现的几版 Sentence 类都不具有惰性,因为 __init__ 方法急迫的构建好了文本中的单词列表,然后将其绑定到 self.words 属性上。这样就得处理整个文本,列表使用的内存量可能与文本本身一样多(或许更多,取决于文本中有多少非单词字符)。

re.finditer 函数是 re.findall 函数的惰性版本,返回的是一个生成器,按需生成 re.MatchObject 实例。我们可以使用这个函数来让 Sentence 类变得懒惰,即只在需要时才生成下一个单词。

标准库提供了很多生成器函数,有用于逐行迭代纯文本文件的对象,还有出色的 os.walk 函数等等。本节专注于通用的函数:参数为任意的可迭代对象,返回值是生成器,用于生成选中的、计算出的和重新排列的元素。

第一组是用于 过滤 的生成器函数:从输入的可迭代对象中产出元素的子集,而且不修改元素本身。这种函数大多数都接受一个断言参数(predicate),这个参数是个 布尔函数 ,有一个参数,会应用到输入中的每个元素上,用于判断元素是否包含在输出中。

以下为这些函数的演示:

第二组是用于映射的生成器函数:在输入的单个/多个可迭代对象中的各个元素上做计算,然后返回结果。

以下为这些函数的用法:

第三组是用于合并的生成器函数,这些函数都可以从输入的多个可迭代对象中产出元素。

以下为演示:

第四组是从一个元素中产出多个值,扩展输入的可迭代对象。

以下为演示:

第五组生成器函数用于产出输入的可迭代对象中的全部元素,不过会以某种方式重新排列。

下面的函数都接受一个可迭代的对象,然后返回单个结果,这种函数叫“归约函数”,“合拢函数”或“累加函数”,其实,这些内置函数都可以用 functools.rece 函数实现,但内置更加方便,而且还有一些优点。

参考教程:
《流畅的python》 P330 - 363

‘陆’ python的迭代器为什么一定要实现

这是个和多态有关的问题,Python中关于迭代有两个概念,第一个是Iterable,第二个是Iterator,协议规定Iterable的__iter__方法会返回一个Iterator, Iterator的__next__方法(Python 2里是next)会返回下一个迭代对象,如果迭代结束则抛出StopIteration异常。
同时,Iterator自己也是一种Iterable,所以也需要实现Iterable的接口,也就是__iter__,这样在for当中两者都可以使用。Iterator的__iter__只需要返回自己就行了。这样,下面的代码就可以工作:

for i in my_list:
...

for i in iter(mylist):
...

for i in (v for v in mylist if v is not None):
...

Python中许多方法直接返回iterator,比如itertools里面的izip等方法,如果Iterator自己不是Iterable的话,就很不方便,需要先返回一个Iterable对象,再让Iterable返回Iterator。生成器表达式也是一个iterator,显然对于生成器表达式直接使用for是非常重要的。
那么为什么不只保留Iterator的接口而还需要设计Iterable呢?许多对象比如list、dict,是可以重复遍历的,甚至可以同时并发地进行遍历,通过__iter__每次返回一个独立的迭代器,就可以保证不同的迭代过程不会互相影响。而生成器表达式之类的结果往往是一次性的,不可以重复遍历,所以直接返回一个Iterator就好。让Iterator也实现Iterable的兼容就可以很灵活地选择返回哪一种。

总结来说Iterator实现的__iter__是为了兼容Iterable的接口,从而让Iterator成为Iterable的一种实现。

补充一下题主对于for的理解基本上是正确的,但仍然有一点点偏差:for为了兼容性其实有两种机制,如果对象有__iter__会使用迭代器,但是如果对象没有__iter__,但是实现了__getitem__,会改用下标迭代的方式。我们可以试一下:

>>> class NotIterable(object):
... def __init__(self, baselist):
... self._baselist = baselist
... def __getitem__(self, index):
... return self._baselist[index]
...
>>> t = NotIterable([1,2,3])
>>> for i in t:
... print i
...
1
2
3
>>> iter(t)
<iterator object at 0x0345E3D0>

当for发现没有__iter__但是有__getitem__的时候,会从0开始依次读取相应的下标,直到发生IndexError为止,这是一种旧的迭代协议。iter方法也会处理这种情况,在不存在__iter__的时候,返回一个下标迭代的iterator对象来代替。一个重要的例子是str,字符串就是没有__iter__接口的。

‘柒’ Python中的for循环、可迭代对象、迭代器和生成器-

问题:

“迭代是重复反馈过程的活动,其目的通常是为了逼近所需目标或结果。”在Python中,可迭代对象、迭代器、for循环都是和“迭代”密切相关的知识点。

下面我们试着通过实现自定义一下list的迭代过程:

迭代器和生成器总是会被同时提起,那么它们之间有什么关联呢——生成器是一种特殊的迭代器。

阅读全文

与python代码自己迭代相关的资料

热点内容
dvd光盘存储汉子算法 浏览:758
苹果邮件无法连接服务器地址 浏览:963
phpffmpeg转码 浏览:672
长沙好玩的解压项目 浏览:145
专属学情分析报告是什么app 浏览:564
php工程部署 浏览:833
android全屏透明 浏览:737
阿里云服务器已开通怎么办 浏览:803
光遇为什么登录时服务器已满 浏览:302
PDF分析 浏览:486
h3c光纤全工半全工设置命令 浏览:143
公司法pdf下载 浏览:383
linuxmarkdown 浏览:350
华为手机怎么多选文件夹 浏览:683
如何取消命令方块指令 浏览:350
风翼app为什么进不去了 浏览:779
im4java压缩图片 浏览:362
数据查询网站源码 浏览:151
伊克塞尔文档怎么进行加密 浏览:893
app转账是什么 浏览:163