① python对excel操作
Python对于Excel的操作是多种多样的,掌握了相关用法就可以随心所欲的操作数据了!
操作xls文件
xlrd(读操作):
import xlrd
1、引入xlrd模块
workbook=xlrd.open_workbook("36.xls")
2、打开[36.xls]文件,获取excel文件的workbook(工作簿)对象
names=workbook.sheet_names()
3、获取所有sheet的名字
worksheet=workbook.sheet_by_index(0)
4、通过sheet索引获得sheet对象
worksheet为excel表第一个sheet表的实例化对象
worksheet=workbook.sheet_by_name("各省市")
5、通过sheet名获得sheet对象
worksheet为excel表sheet名为【各省市】的实例化对象
nrows=worksheet.nrows
6、获取该表的总行数
ncols=worksheet.ncols
7、获取该表的总列数
row_data=worksheet.row_values(n)
8、获取该表第n行的内容
col_data=worksheet.col_values(n)
9、获取该表第n列的内容
cell_value=worksheet.cell_value(i,j)
10、获取该表第i行第j列的单元格内容
xlwt(写操作):
import xlwt
1、引入xlwt模块
book=xlwt.Workbook(encoding="utf-8")
2、创建一个Workbook对象,相当于创建了一个Excel文件
sheet = book.add_sheet('test')
3、创建一个sheet对象,一个sheet对象对应Excel文件中的一张表格。
sheet.write(i, j, '各省市')
4、向sheet表的第i行第j列,写入'各省市'
book.save('Data\\36.xls')
5、保存为Data目录下【36.xls】文件
操作xlsx文件
openpyxl(读操作):
import openpyxl
1、引入openpyxl模块
workbook=openpyxl.load_workbook("36.xlsx")
2、打开[36.xlsx]文件,获取excel文件的workbook(工作簿)对象
names=workbook.sheetnames
worksheet=workbook.worksheets[0]
worksheet=workbook["各省市"]
ws = workbook.active
6、获取当前活跃的worksheet,默认就是第一个worksheet
nrows=worksheet.max_row
7、获取该表的总行数
ncols=worksheet.max_column
8、获取该表的总列数
content_A1= worksheet['A1'].value
9、获取该表A1单元格的内容
content_A1=worksheet.cell(row=1,column=1).value
10、获取该表第1列第1列的内容
openpyxl(写操作):
workbook=openpyxl.Workbook()worksheet = workbook.active
3、获取当前活跃的worksheet,默认就是第一个worksheet
worksheet.title="test"
4、worksheet的名称设置为"test"
worksheet = workbook.create_sheet()
5、创建一个新的sheet表,默认插在工作簿末尾
worksheet.cell(i,j,'空')
6、第i行第j列的值改成'空'
worksheet["B2"]="空"
7、将B2的值改成'空'
worksheet.insert_cols(1)
8、在第一列之前插入一列
worksheet.append(["新增","台湾省"])
9、添加行
workbook.save("Data\\36.xlsx")
10、保存为Data目录下【36.xlsx】文件
pandas处理excel文件
pandas操作:
import pandas as pd
1、引入pandas模块
data = pd.read_excel('36.xls')
2、读取[36.xls]或者[36.xlsx]文件
data = pd.read_csv('36.csv')
3、读取[36.csv]文件
data=data.dropna(subset=['店铺'])
4、过滤掉data店铺列有缺失的数据
data.sort_values("客户网名", inplace=True)
5、将data数据按照客户网名列进行从小到大排序
data = pd.read_csv(36.csv, skiprows = [0,1,2],sep = None, skipfooter = 4)
6、读取[36.csv]文件,前三行和后四行的数据略过
data = data.fillna('空')
7、将data中的空白处填充成'空'
data.drop_plicates('订单','first',inplace=True)
8、data中的数据,按照【订单】列做去重处理,保留第一条数据
data=pd.DataFrame(data,columns=['订单','仓库'])
9、只保留data中【订单】【仓库】列的数据
data = data[(data[u'展现量'] > 0)]
10、只保留【展现量】列中大于0的数据
data= data[data["订单"].str.contains('000')]
11、只保留【订单】列中包含'000'的数据
data= data[data["仓库"]=='正品仓']
12、只保留【仓库】列是'正品仓'的数据
xs= data[data["店铺"]=='南极人']['销售额']
13、获取店铺是南极人的销售额数据
data['订单'] = data['订单'].str[3:7]
14、【订单】列的值只保留4-8个字节的值
data["邮资"] = np.where((data['店铺'].str.contains('T|t')) & -(data['仓库'] == '代发仓'), 8, data['邮资'])
15、满足店铺列包含 T 或 t 并且仓库不等于'代发仓'的话,将邮资的值改成8,否则值不变
data = np.array(data).tolist()
16、将data从DataFrame转换成列表
data=pd.DataFrame(data)
17、将列表转换成DataFrame格式
zhan = data[u'展现'].sum().round(2)
18、将data中所有展现列数据求和,并取两位小数
sum=data.groupby(['店铺'])['刷单'].sum()
19、将data中按照店铺对刷单进行求和
counts=data['店铺'].value_counts()
20、将data按照店铺进行计算
avg=data.groupby(['店铺'])['刷单'].mean()
21、将data按照店铺对刷单进行求平均数
count = pd.concat([counts,sum], axis=1, ignore_index=True, sort=True)
22、将counts和sum两个DataFrame进行了组合
count=count.rename(index=str, columns={0: "订单", 1: "成本"})
23、将新生成的DataFrame列名进行修改
data = pd.merge(sum, counts, how='left', left_on='店铺', right_on='店铺')
24、将列表转换成DataFrame格式
from openpyxl import Workbook
wb=Workbook()
ws1=wb.active
data.to_excel('36.xlsx')
wb.close()
25、data完整的写入到关闭过程,执行此操作的时候【36.xlsx】不能是打开状态
excel格式操作
样式处理:
1、打开【36.xlsx】
sheet=workbook.worksheets[0]
2、将第一个sheet对象赋值给sheet
sheet.column_dimensions['A'].width = 20.0
3、将A列的宽度设置为20
sheet.row_dismensions[1].height = 20.0
4、将第一行的行高设置为20
sheet.merge_cells('A1:A2')
5、将sheet表A1和A2单元格合并
sheet.unmerge_cells('A1:A2')
6、将sheet表A1和A2单元格取消合并
sheet.insert_rows(2,2)
7、将sheet表从第2行插入2行
sheet.insert_cols(3,2)
8、将sheet表从第3列插入2列
sheet.delete_rows(2)
9、删除第2行
sheet.delete_cols(3, 2)
10、将sheet表从第3列开始删除2列
from openpyxl.styles import Font, Border, PatternFill, colors, Alignment
11、分别引入字体、边框、图案填充、颜色、对齐方式
sheet.cell(i,j).font = Font(name='Times New Roman', size=14, bold=True, color=colors.WHITE)
12、设置sheet表第 i 行第 j 列的字体
sheet.cell(i,j).alignment = Alignment(horizontal='center', vertical='center')
13、设置sheet表第 i 行第 j 列的字体对齐方式
left, right, top, bottom = [Side(style='thin', color='000000')] * 4sheet.cell(i,j).border = Border(left=left, right=right, top=top, bottom=bottom)
14、引入边框样式并调用
fill = PatternFill("solid", fgColor="1874CD")sheet.cell(1,j).fill = fill
15、引入填充样式,并调用
import xlrd
from openpyxl import Workbook
from openpyxl import load_workbook
workbook=load_workbook(filename='C:/Users/EDZ/Desktop/工作/2021.08.03/大兄弟.xlsx')
sheet=workbook.active
sheet.insert_cols(idx=1)
sheet.merge_cells(A1:A3)
sheet['A1']=['上海','山东','浙江']
② python之excel操作
在数据处理方面,Python 一直扮演着重要的角色,对于 Excel 操作,它有着完整且成熟的第三方库,使用也较为简单。
Python 中常用 Excel 操作库如下:
向 Excel 中写入一些数据。
通过 pip install xlwt 命令安装。
执行结果:
通过 pip install XlsxWriter 命令安装。
XlsxWriter 可以很方便的生成图表。
执行结果:
我们使用 xlrd 读取之前写入的数据,使用 pip install xlrd 命令安装。
之前写入的数据还有一个平均年龄是空着的,我们先读取之前写入的数据,再计算出平均值,最后将平均值写入。这里要用到 xlutils 模块,使用 pip install xlutils 安装。
执行结果:
③ python能在excel运行吗
Python部落组织翻译, 禁止转载
【介绍】
ExclePython是一款轻量级的COM库,它支持你从Excel VBA中调用Python代码和运行Python 其他功能(确实任何语言都支持COM)。这篇文章我将展示你如何去使用它。
【背景】
虽然excel的市场地位正日益面临免费的(OpenOffice)和云软件(Google Sheets)的挑战和逐渐取代的风险,但是Excel依然是现在办公环境中,使用范围最广、用户界面友好的数据处理软件。能够实现从Excel中调用python,得益于Excel拥有庞大收集能力的库和强大的语言能力。ExcelPython 是一款处理性的COM库,它能让你加载python模块,调用程序和运行函数。另外一些Excel/Python接口工具,例如PyXLL和Python-Excel,它们同样都是很优秀的工具,只是与ExcelPython在功能上和适用性上有些微差别。ExcelPython的优势有:
1. 免费(不用购买和免费协议)
2. 小而轻
3. 高度嵌入:似乎采用已经打包好的python函数,所以可以在不安装python情况下表格程序可以扩展使用;
4. 对最终用户高度透明:python由Excel VBA调用所以没有不需要其他另外的中间程序插入,即使是表格程序已经升级了;
5. 通用性:任何存在的Python模块和函数都可以调用,以及任何Python对象都可以被处理,另外,ExcelPython不必写入额外的Python代码来做可调用的函数,可以直接调用Python的的各种库;
【使用代码】
如果你想了解最基本的关于如何使用这个库的功能的话,直接登录ExcelPython在SourceForge的网友,那里你会找到一个维基条目,可以一步步指引你如何操作。
在本章介绍中,我们将展示下利用ExcelPython去合并收集到的列表,排列他们的数据以及删除任意副本。这是一个非常简单的python任务,只需要几行代码,而如果用VBA代码来实现同样功能则需要更多的代码。
④ python如何处理excel
您好,方法
1、在python项目中,新建python文件,并依次导入xlrd和xlwt。
2、接着调用open_workbook()方法,打开一个excel文件。
3、调用sheet_by_name()方法,读取文件的sheet页。
4、如果是后面加了个s,sheet_names表示获取excel中所有的sheet页。
5、利用sheets()方法加序号,可以获取某个sheet页对象。
6、如果想要获取excel某个sheet页中记录的总数,使用nrows。
7、在cell()中传入两个值,一个行一个列,然后value获取对应单元格的值。
⑤ excel怎么导入python中
读excel要用到xlrd模块,官网安装(http://pypi.python.org/pypi/xlrd)。然后就可以跟着里面的例子稍微试一下就知道怎么用了。大概的流程是这样的:
1、导入模块
import xlrd
2、打开Excel文件读取数据
data = xlrd.open_workbook('excel.xls')
3、获取一个工作表
① table = data.sheets()[0] #通过索引顺序获取
② table = data.sheet_by_index(0) #通过索引顺序获取
③ table = data.sheet_by_name(u'Sheet1')#通过名称获取
4、获取整行和整列的值(返回数组)
table.row_values(i)
table.col_values(i)
5、获取行数和列数
table.nrows
table.ncols
6、获取单元格
table.cell(0,0).value
table.cell(2,3).value
就我自己使用的时候觉得还是获取cell最有用,这就相当于是给了你一个二维数组,余下你就可以想怎么干就怎么干了。得益于这个十分好用的库代码很是简洁。但是还是有若干坑的存在导致话了一定时间探索。现在列出来供后人参考吧:
1、首先就是我的统计是根据姓名统计各个表中的信息的,但是调试发现不同的表中各个名字貌似不能够匹配,开始怀疑过编码问题,不过后来发现是因为空格。因为在excel中输入的时候很可能会顺手在一些名字后面加上几个空格或是tab键,这样看起来没什么差别,但是程序处理的时候这就是两个完全不同的串了。我的解决方法是给每个获取的字符串都加上strip()处理一下。效果良好
2、还是字符串的匹配,在判断某个单元格中的字符串(中文)是否等于我所给出的的时候发现无法匹配,并且各种unicode也不太奏效,网络过一些解决方案,但是都比较复杂或是没用。最后我采用了一个比较变通的方式:直接从excel中获取我想要的值再进行比较,效果是不错就是通用行不太好,个呢不能问题还没解决。
二、写excel表
写excel表要用到xlwt模块,官网下载(http://pypi.python.org/pypi/xlwt)。大致使用流程如下:
1、导入模块
复制代码代码如下:
import xlwt
2、创建workbook(其实就是excel,后来保存一下就行)
复制代码代码如下:
workbook = xlwt.Workbook(encoding = 'ascii')
3、创建表
复制代码代码如下:
worksheet = workbook.add_sheet('My Worksheet')
4、往单元格内写入内容
复制代码代码如下:
worksheet.write(0, 0, label = 'Row 0, Column 0 Value')
5、保存
复制代码代码如下:
workbook.save('Excel_Workbook.xls')
⑥ python与excel结合需要安装什么
python操作excel的第三方库有openpyxl、pandas、xlrd、xlwt,等等。
⑦ python如何对excel数据进行处理
在python语言中,可以使用xlrd和xlwt两个库操作excel。
在python语言中处理Excel的方法:
在python项目中,新建python文件,并依次导入xlrd和xlwt。
接着调用open_workbook()方法,打开一个excel文件
调用sheet_by_name()方法,读取文件的sheet页
如果是后面加了个s,sheet_names表示获取excel中所有的sheet页
利用sheets()方法加序号,可以获取某个sheet页对象
如果想要获取excel某个sheet页中记录的总数,使用nrows
在cell()中传入两个值,一个行一个列,然后value获取对应单元格的值
推荐:python视频教程以上就是小编分享的关于python如何对excel数据进行处理的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!
⑧ 像Excel一样使用Python(一)
在进行数据处理时,如果数据简单,数量不多,excel是大家的首选。但是当数据众多,类型复杂,需要灵活地显示切片、进行索引、以及排序时,python会更加方便。借助python中的numpy和pandas库,它能快速完成各种任务,包括数据的创建、检查、清洗、预处理、提取、筛选、汇总、统计等。接下来几篇文章,将以excel为参照,介绍python中数据的处理。
提到pandas,那就不得不提两类重要的数据结构,Series和DataFrame,这两类数据结构都是建立在numpy的数组array基础上。与array相比,Series是一个一维的数据集,但是每个数据元素都带有一个索引,有点类似于字典。而DataFrame在数组的基础上,增加了行索引和列索引,类似于Series的字典,或者说是一个列表集。
所以在数据处理前,要安装好numpy , pandas。接下来就看看如何完成一套完整的数据操作。
创建数据表的方法分两种,分别是从外部导入数据,以及直接写入数据。
在python中,也可外部导入xlsx格式文件,使用read_excel()函数:
import pandas as pd
from pandas import DataFrame,Series
data=DataFrame(pd.read_excel('c:/python27/test.xlsx'))
print data
输出:
Gene Size Function
0 arx1 411 NaN
1 arx2 550 monooxygenase
2 arx3 405 aminotransferase
……
即:调用pandas中read_excel属性,来读取文件test.xlsx,并转换成DataFrame格式,赋给变量data。在每一行后,自动分了一个索引值。除了excel,还支持以下格式文件的导入和写入:
Python写入的方法有很多,但还是不如excel方便。常用的例如使用相等长度的字典或numpy数组来创建:
data1 = DataFrame(
{'Gene':['arx1','arx2','arx3'],
'Size':[411,550,405],
'Func':[np.NaN,'monooxygenase','aminotransferase ']})
print data1
输出
Func Gene Size
0 NaN arx1 411
1 monooxyg arx2 550
2 amino arx3 405
分配一个行索引后,自动排序并输出。
在python中,可以使用info()函数查看整个数据的详细信息。
print data.info()
输出
RangeIndex: 7 entries, 0 to 6
Data columns (total 3 columns):
Gene 7 non-null object
Size 7 non-null int64
Function 5 non-null object
dtypes: int64(1), object(2)
memory usage: 240.0+ bytes
None
此外,还可以通过shape, column, index, values, dtypes等函数来查看数据维度、行列组成、所有的值、 数据类型:
print data1.shape
print data1.index
print data1.columns
print data1.dtypes
输出
(3, 3)
RangeIndex(start=0, stop=3, step=1)
Index([u'Func', u'Gene', u'Size'], dtype='object')
Func object
Gene object
Size int64
dtype: object
在excel中可以按“F5”,在“定位条件”中选择“空值”,选中后,输入替换信息,再按“Ctrl+Enter”即可完成替换。
在python中,使用函数 isnull 和 notnull 来检测数据丢失, 包含空值返回True,不包含则返回False。
pd.isnull(data1)
pd.notnull(data1)
也可以使用函数的实例方法,以及加入参数,对某一列进行检查:
print data1['Func'].isnull()
输出
Func Gene Size
0 True False False
1 False False False
2 False False False
再使用fillna对空值进行填充:
data.fillna(value=0)
#用0来填充空值
data['Size'].fillna(data1['Size'].mean())
#用data1中Size列的平均值来填充空值
data['Func']=data['Func'].map(str.strip)
#清理Func列中存在的空格
Excel中可以按“Ctrl+F”,可调出替换对话框,替换相应数据。
Python中,使用replace函数替换:
data['Func'].replace('monooxygenase', 'oxidase')
将Func列中的'monooxygenase'替换成'oxidase'。
Excel中,通过“数据-筛选-高级”可以选择性地看某一列的唯一值。
Python中,使用unique函数查看:
print data['Func'].unique()
输出
[nan u'monooxygenase' u'aminotransferase' u'methyltransferase']
Excel中,通过UPPER、LOWER、PROPER等函数来变成大写、小写、首字母大写。
Python中也有同名函数:
data1['Gene'].str.lower()
Excel中可以通过“数据-删除重复项”来去除重复值。
Python中,可以通过drop_plicates函数删除重复值:
print data['Func'].drop_plicates()
输出
0 NaN
1 monooxygenase
2 aminotransferase
3 methyltransferase
Name: Func, dtype: object
还可以设置“ keep=’last’ ”参数,后出现的被保留,先出现的被删除:
print data['Func'].drop_plicates(keep='last')
输出
2 aminotransferase
3 methyltransferase
6 monooxygenase
8 NaN
Name: Func, dtype: object
内容参考:
Python For Data Analysis
蓝鲸网站分析博客,作者蓝鲸(王彦平)
⑨ 如何用python读取excel文件
1.首先说明我是使用的python3.5,我的office版本是2010,首先打开dos命令窗,安装必须的两个库,命令是:
pip3 install xlrd
Pip3 install xlwt
2.准备好excel,例如我的一个工作文件,我放在D盘/网络经验/11.xlsx,只有一个页签A,内容是一些销售数据
3.打开pycharm,新建一个excel.py的文件,首先导入支持库
import xlrdimport xlwt
4.针对刚入门的新手,先介绍三个知识,第一个:获取excel的sheet名称,第二:获取excel行数与列数,第三:获取第几行第几列的具体值,这是最常用的三个知识点
5.贴出代码,具体分析:
(1)要操作excel,首先得打开excel,使用open_workbook(‘路径’)
(2)要获取行与列,使用nrows(行),ncols(列)
(3)获取具体的值,使用cell(row,col).value
workbook=xlrd.open_workbook(r'E:11.xlsx')print (workbook.sheet_names()) sheet2=workbook.sheet_by_name('A') nrows=sheet2.nrows ncols=sheet2.ncols print(nrows,ncols) cell_A=sheet2.cell(1,1).value print(cell_A)
6.要在excel里写入值,就要使用write属性,重点说明写入是用到xlwt这个支援库,思路是先新建excel,然后新建页签B,然后将一组数据写入到B,最后保存为excel.xls,这里建议保存为2003的格式,大部分电脑都能打开,特别注意保存的excel的路径是在python工作文件的目录下面,贴出代码:
stus = [['年', '月'], ['2018', '10'], ['2017', '9'], ['2016', '8']]Excel = xlwt.Workbook() # 新建excelsheet = Excel.add_sheet('B') #新建页签Brow = 0for stu in stus: col = 0 for s in stu: sheet.write(row, col, s) #开始写入 col = col + 1 row = row + 1Excel.save('Excel.xls') #保存
关于如何用python读取excel文件,环球青藤小编就和大家分享到这里了,学习是永无止境的,学习一项技能更是受益终身,所以,只要肯努力学,什么时候开始都不晚。如果您还想继续了解关于python编程的学习方法及素材等内容,可以点击本站其他文章学习。
⑩ Python操作Excel实现自动化报表
Python操作Excel实现自动化报表
安装
python -m pip install xlrd xlwt xlutils。
基本用法
1.从指定文件路径读取excel表格,进行一定操作,然后保存到另一个excel文件:result.xlsx
import xlwt
import xlrd
from xlutils. import
import pandas as pd
from pandas import DataFrame,Series
import os
os.chdir('./')
# 从指定文件路径读取excel表格
df = pd.read_excel('D:/mypaper/data/data.xlsx')
# 查看df内容
# 根据age算出出生年份,增加一列
import datetime
import os
year = datetime.datetime.now().year#获取当前系统时间对应的年份
df['birth'] = year-df['age']
df.to_excel('result.xlsx')#保存到当前工作目录,可以用os.getcwd()查看
#查看下此时df的内容,可以看到已经生成了birth这一列。
2.单元格操作
# 定义方法:读取指定目录下Excel文件某个sheet单元格的值
def excel_read(file_path,table,x,y):
data = xlrd.open_workbook(file_path)
table = data.sheet_by_name(table)
return table.cell(y,x).value
# 定义方法:单元格值及样式
write_obj_list = []
def concat_obj(cols,rows,value):
write_obj_list.append({'cols':cols,'rows':rows,'value':value,
'style':xlwt.easyxf('font: name 宋体,height 280;alignment: horiz centre')})
# 定义方法:合并单元格
def merge_unit(srows,erows,scols,ecols,value):
write_obj_list.append({'id':'merge','srows':srows,'erows':erows,'scols':scols,
'ecols':ecols,'value':value,'style':xlwt.easyxf('font: name 宋体,height 280;alignment: horiz centre')})
# 定义方法:更新excel
excel_update(file_path,write_obj_list,new_path):
old_excel = xlrd.open_workbook(file_path, formatting_info=True)
#管道作用
new_excel = (old_excel)
'''
通过get_sheet()获取的sheet有write()方法
'''
sheet1 = new_excel.get_sheet(0)
'''
1代表是修改第几个工作表里,从0开始算是第一个。此处修改第一个工作表
'''
for item in write_obj_list:
if 'id' not in item.keys():
if 'style' in item.keys():
sheet1.write(item['rows'], item['cols'], item['value'],item['style'])
else:
sheet1.write(item['rows'], item['cols'], item['value'])
else:
if 'style' in item.keys():
sheet1.write_merge(item['srows'],item['erows'],item['scols'], item['ecols'], item['value'],item['style'])
else:
sheet1.write_merge(item['srows'],item['erows'],item['scols'], item['ecols'], item['value'])
'''
如果报错 dict_items has no attributes sort
把syle源码中--alist.sort() 修改为----> sorted(alist)
一共修改2次
'''
new_excel.save(file_path)
#参数详解
# srows:合并的起始行数
# erows:合并的结束行数
# scols:合并的起始列数
# ecols:合并的结束列数
# value:合并单元格后的填充值
# style:合并后填充风格:
# font: name 宋体
# height 280;
# alignment: horiz centre
# ... 与excel操作基本保持一致
(注意:该方法仅仅是将需要直行的动作保存到一个list中,真正的动作还未执行,执行动作是发生在excel_update方法中)
最终调用excel_update方法,传入每个单元格需要进行的操作和填充值的write_obj_list以及文件保存路径file_path,就可以在当前工作目录下生成想要的Excel结果文件。
注意:
1.write_obj_list支持用户自定义
2.write_obj_list也可以是根据excel_read方法读取现有待修改的excel文件(可以维持原有表格的格式)而生成
End