① python如何通过字符或数字动态获取对象的名称或者属性
首先通过一个例子来看一下本文中可能用到的对象和相关概念。
#coding: UTF-8
import sys # 模块,sys指向这个模块对象
import inspect
def foo(): pass # 函数,foo指向这个函数对象
class Cat(object): # 类,Cat指向这个类对象
def __init__(self, name='kitty'):
self.name = name
def sayHi(self): # 实例方法,sayHi指向这个方法对象,使用类或实例.sayHi访问
print self.name, 'says Hi!' # 访问名为name的字段,使用实例.name访问
cat = Cat() # cat是Cat类的实例对象
print Cat.sayHi # 使用类名访问实例方法时,方法是未绑定的(unbound)
print cat.sayHi # 使用实例访问实例方法时,方法是绑定的(bound)
有时候我们会碰到这样的需求,需要执行对象的某个方法,或是需要对对象的某个字段赋值,而方法名或是字段名在编码代码时并不能确定,需要通过参数传递字符串的形式输入。举个具体的例子:当我们需要实现一个通用的DBM框架时,可能需要对数据对象的字段赋值,但我们无法预知用到这个框架的数据对象都有些什么字段,换言之,我们在写框架的时候需要通过某种机制访问未知的属性。
这个机制被称为反射(反过来让对象告诉我们他是什么),或是自省(让对象自己告诉我们他是什么,好吧我承认括号里是我瞎掰的- -#),用于实现在运行时获取未知对象的信息。反射是个很吓唬人的名词,听起来高深莫测,在一般的编程语言里反射相对其他概念来说稍显复杂,一般来说都是作为高级主题来讲;但在Python中反射非常简单,用起来几乎感觉不到与其他的代码有区别,使用反射获取到的函数和方法可以像平常一样加上括号直接调用,获取到类后可以直接构造实例;不过获取到的字段不能直接赋值,因为拿到的其实是另一个指向同一个地方的引用,赋值只能改变当前的这个引用而已。
1. 访问对象的属性
以下列出了几个内建方法,可以用来检查或是访问对象的属性。这些方法可以用于任意对象而不仅仅是例子中的Cat实例对象;Python中一切都是对象。
cat = Cat('kitty')
print cat.name # 访问实例属性
cat.sayHi() # 调用实例方法
print dir(cat) # 获取实例的属性名,以列表形式返回
if hasattr(cat, 'name'): # 检查实例是否有这个属性
setattr(cat, 'name', 'tiger') # same as: a.name = 'tiger'
print getattr(cat, 'name') # same as: print a.name
getattr(cat, 'sayHi')() # same as: cat.sayHi()
dir([obj]):
调用这个方法将返回包含obj大多数属性名的列表(会有一些特殊的属性不包含在内)。obj的默认值是当前的模块对象。
hasattr(obj, attr):
这个方法用于检查obj是否有一个名为attr的值的属性,返回一个布尔值。
getattr(obj, attr):
调用这个方法将返回obj中名为attr值的属性的值,例如如果attr为'bar',则返回obj.bar。
setattr(obj, attr, val):
调用这个方法将给obj的名为attr的值的属性赋值为val。例如如果attr为'bar',则相当于obj.bar = val。
2. 访问对象的元数据
当你对一个你构造的对象使用dir()时,可能会发现列表中的很多属性并不是你定义的。这些属性一般保存了对象的元数据,比如类的__name__属性保存了类名。大部分这些属性都可以修改,不过改动它们意义并不是很大;修改其中某些属性如function.func_code还可能导致很难发现的问题,所以改改name什么的就好了,其他的属性不要在不了解后果的情况下修改。
接下来列出特定对象的一些特殊属性。另外,Python的文档中有提到部分属性不一定会一直提供,下文中将以红色的星号*标记,使用前你可以先打开解释器确认一下。
2.0. 准备工作:确定对象的类型
在types模块中定义了全部的Python内置类型,结合内置方法isinstance()就可以确定对象的具体类型了。
isinstance(object, classinfo):
检查object是不是classinfo中列举出的类型,返回布尔值。classinfo可以是一个具体的类型,也可以是多个类型的元组或列表。
types模块中仅仅定义了类型,而inspect模块中封装了很多检查类型的方法,比直接使用types模块更为轻松,所以这里不给出关于types的更多介绍,如有需要可以直接查看types模块的文档说明。本文第3节中介绍了inspect模块。
2.1. 模块(mole)
__doc__: 文档字符串。如果模块没有文档,这个值是None。
*__name__: 始终是定义时的模块名;即使你使用import .. as 为它取了别名,或是赋值给了另一个变量名。
*__dict__: 包含了模块里可用的属性名-属性的字典;也就是可以使用模块名.属性名访问的对象。
__file__: 包含了该模块的文件路径。需要注意的是内建的模块没有这个属性,访问它会抛出异常!
import fnmatch as m
print m.__doc__.splitlines()[0] # Filename matching with shell patterns.
print m.__name__ # fnmatch
print m.__file__ # /usr/lib/python2.6/fnmatch.pyc
print m.__dict__.items()[0] # ('fnmatchcase', <function fnmatchcase="" at="" 0xb73deb54="">)</function>
2.2. 类(class)
__doc__: 文档字符串。如果类没有文档,这个值是None。
*__name__: 始终是定义时的类名。
*__dict__: 包含了类里可用的属性名-属性的字典;也就是可以使用类名.属性名访问的对象。
__mole__: 包含该类的定义的模块名;需要注意,是字符串形式的模块名而不是模块对象。
*__bases__: 直接父类对象的元组;但不包含继承树更上层的其他类,比如父类的父类。
print Cat.__doc__ # None
print Cat.__name__ # Cat
print Cat.__mole__ # __main__
print Cat.__bases__ # (<type ?object?="">,)
print Cat.__dict__ # {'__mole__': '__main__', ...}</type>
2.3. 实例(instance)
实例是指类实例化以后的对象。
*__dict__: 包含了可用的属性名-属性字典。
*__class__: 该实例的类对象。对于类Cat,cat.__class__ == Cat 为 True。
print cat.__dict__
print cat.__class__
print cat.__class__ == Cat # True
2.4. 内建函数和方法(built-in functions and methods)
根据定义,内建的(built-in)模块是指使用C写的模块,可以通过sys模块的builtin_mole_names字段查看都有哪些模块是内建的。这些模块中的函数和方法可以使用的属性比较少,不过一般也不需要在代码中查看它们的信息。
__doc__: 函数或方法的文档。
__name__: 函数或方法定义时的名字。
__self__: 仅方法可用,如果是绑定的(bound),则指向调用该方法的类(如果是类方法)或实例(如果是实例方法),否则为None。
*__mole__: 函数或方法所在的模块名。
2.5. 函数(function)
这里特指非内建的函数。注意,在类中使用def定义的是方法,方法与函数虽然有相似的行为,但它们是不同的概念。
__doc__: 函数的文档;另外也可以用属性名func_doc。
__name__: 函数定义时的函数名;另外也可以用属性名func_name。
*__mole__: 包含该函数定义的模块名;同样注意,是模块名而不是模块对象。
*__dict__: 函数的可用属性;另外也可以用属性名func_dict。
不要忘了函数也是对象,可以使用函数.属性名访问属性(赋值时如果属性不存在将新增一个),或使用内置函数has/get/setattr()访问。不过,在函数中保存属性的意义并不大。
func_defaults: 这个属性保存了函数的参数默认值元组;因为默认值总是靠后的参数才有,所以不使用字典的形式也是可以与参数对应上的。
func_code: 这个属性指向一个该函数对应的code对象,code对象中定义了其他的一些特殊属性,将在下文中另外介绍。
func_globals: 这个属性指向当前的全局命名空间而不是定义函数时的全局命名空间,用处不大,并且是只读的。
*func_closure: 这个属性仅当函数是一个闭包时有效,指向一个保存了所引用到的外部函数的变量cell的元组,如果该函数不是一个内部函数,则始终为None。这个属性也是只读的。
下面的代码演示了func_closure:
#coding: UTF-8
def foo():
n = 1
def bar():
print n # 引用非全局的外部变量n,构造一个闭包
n = 2
return bar
closure = foo()
print closure.func_closure
# 使用dir()得知cell对象有一个cell_contents属性可以获得值
print closure.func_closure[0].cell_contents # 2
由这个例子可以看到,遇到未知的对象使用dir()是一个很好的主意 :)
2.6. 方法(method)
方法虽然不是函数,但可以理解为在函数外面加了一层外壳;拿到方法里实际的函数以后,就可以使用2.5节的属性了。
__doc__: 与函数相同。
__name__: 与函数相同。
*__mole__: 与函数相同。
im_func: 使用这个属性可以拿到方法里实际的函数对象的引用。另外如果是2.6以上的版本,还可以使用属性名__func__。
im_self: 如果是绑定的(bound),则指向调用该方法的类(如果是类方法)或实例(如果是实例方法),否则为None。如果是2.6以上的版本,还可以使用属性名__self__。
im_class: 实际调用该方法的类,或实际调用该方法的实例的类。注意不是方法的定义所在的类,如果有继承关系的话。
im = cat.sayHi
print im.im_func
print im.im_self # cat
print im.im_class # Cat
这里讨论的是一般的实例方法,另外还有两种特殊的方法分别是类方法(classmethod)和静态方法(staticmethod)。类方法还是方法,不过因为需要使用类名调用,所以他始终是绑定的;而静态方法可以看成是在类的命名空间里的函数(需要使用类名调用的函数),它只能使用函数的属性,不能使用方法的属性。
2.7. 生成器(generator)
生成器是调用一个生成器函数(generator function)返回的对象,多用于集合对象的迭代。
__iter__: 仅仅是一个可迭代的标记。
gi_code: 生成器对应的code对象。
gi_frame: 生成器对应的frame对象。
gi_running: 生成器函数是否在执行。生成器函数在yield以后、执行yield的下一行代码前处于frozen状态,此时这个属性的值为0。
next|close|send|throw: 这是几个可调用的方法,并不包含元数据信息,如何使用可以查看生成器的相关文档。
def gen():
for n in xrange(5):
yield n
g = gen()
print g # <generator object gen at 0x...>
print g.gi_code # <code object gen at 0x...>
print g.gi_frame # <frame object at 0x...>
print g.gi_running # 0
print g.next() # 0
print g.next() # 1
for n in g:
print n, # 2 3 4
接下来讨论的是几个不常用到的内置对象类型。这些类型在正常的编码过程中应该很少接触,除非你正在自己实现一个解释器或开发环境之类。所以这里只列出一部分属性,如果需要一份完整的属性表或想进一步了解,可以查看文末列出的参考文档。
2.8. 代码块(code)
代码块可以由类源代码、函数源代码或是一个简单的语句代码编译得到。这里我们只考虑它指代一个函数时的情况;2.5节中我们曾提到可以使用函数的func_code属性获取到它。code的属性全部是只读的。
co_argcount: 普通参数的总数,不包括*参数和**参数。
co_names: 所有的参数名(包括*参数和**参数)和局部变量名的元组。
co_varnames: 所有的局部变量名的元组。
co_filename: 源代码所在的文件名。
co_flags: 这是一个数值,每一个二进制位都包含了特定信息。较关注的是0b100(0×4)和0b1000(0×8),如果co_flags & 0b100 != 0,说明使用了*args参数;如果co_flags & 0b1000 != 0,说明使用了**kwargs参数。另外,如果co_flags & 0b100000(0×20) != 0,则说明这是一个生成器函数(generator function)。
co = cat.sayHi.func_code
print co.co_argcount # 1
print co.co_names # ('name',)
print co.co_varnames # ('self',)
print co.co_flags & 0b100 # 0
2.9. 栈帧(frame)
栈帧表示程序运行时函数调用栈中的某一帧。函数没有属性可以获取它,因为它在函数调用时才会产生,而生成器则是由函数调用返回的,所以有属性指向栈帧。想要获得某个函数相关的栈帧,则必须在调用这个函数且这个函数尚未返回时获取。你可以使用sys模块的_getframe()函数、或inspect模块的currentframe()函数获取当前栈帧。这里列出来的属性全部是只读的。
f_back: 调用栈的前一帧。
f_code: 栈帧对应的code对象。
f_locals: 用在当前栈帧时与内建函数locals()相同,但你可以先获取其他帧然后使用这个属性获取那个帧的locals()。
f_globals: 用在当前栈帧时与内建函数globals()相同,但你可以先获取其他帧……。
def add(x, y=1):
f = inspect.currentframe()
print f.f_locals # same as locals()
print f.f_back # <frame object at 0x...>
return x+y
add(2)
2.10. 追踪(traceback)
追踪是在出现异常时用于回溯的对象,与栈帧相反。由于异常时才会构建,而异常未捕获时会一直向外层栈帧抛出,所以需要使用try才能见到这个对象。你可以使用sys模块的exc_info()函数获得它,这个函数返回一个元组,元素分别是异常类型、异常对象、追踪。traceback的属性全部是只读的。
tb_next: 追踪的下一个追踪对象。
tb_frame: 当前追踪对应的栈帧。
tb_lineno: 当前追踪的行号。
def div(x, y):
try:
return x/y
except:
tb = sys.exc_info()[2] # return (exc_type, exc_value, traceback)
print tb
print tb.tb_lineno # "return x/y" 的行号
div(1, 0)
3. 使用inspect模块
inspect模块提供了一系列函数用于帮助使用自省。下面仅列出较常用的一些函数,想获得全部的函数资料可以查看inspect模块的文档。
3.1. 检查对象类型
is{mole|class|function|method|builtin}(obj):
检查对象是否为模块、类、函数、方法、内建函数或方法。
isroutine(obj):
用于检查对象是否为函数、方法、内建函数或方法等等可调用类型。用这个方法会比多个is*()更方便,不过它的实现仍然是用了多个is*()。
im = cat.sayHi
if inspect.isroutine(im):
im()
对于实现了__call__的类实例,这个方法会返回False。如果目的是只要可以直接调用就需要是True的话,不妨使用isinstance(obj, collections.Callable)这种形式。我也不知道为什么Callable会在collections模块中,抱歉!我猜大概是因为collections模块中包含了很多其他的ABC(Abstract Base Class)的缘故吧:)
3.2. 获取对象信息
getmembers(object[, predicate]):
这个方法是dir()的扩展版,它会将dir()找到的名字对应的属性一并返回,形如[(name, value), ...]。另外,predicate是一个方法的引用,如果指定,则应当接受value作为参数并返回一个布尔值,如果为False,相应的属性将不会返回。使用is*作为第二个参数可以过滤出指定类型的属性。
getmole(object):
还在为第2节中的__mole__属性只返回字符串而遗憾吗?这个方法一定可以满足你,它返回object的定义所在的模块对象。
get{file|sourcefile}(object):
获取object的定义所在的模块的文件名|源代码文件名(如果没有则返回None)。用于内建的对象(内建模块、类、函数、方法)上时会抛出TypeError异常。
get{source|sourcelines}(object):
获取object的定义的源代码,以字符串|字符串行表返回。代码无法访问时会抛出IOError异常。只能用于mole/class/function/method/code/frame/traceack对象。
getargspec(func):
仅用于方法,获取方法声明的参数,返回元组,分别是(普通参数名的列表, *参数名, **参数名, 默认值元组)。如果没有值,将是空列表和3个None。如果是2.6以上版本,将返回一个命名元组(Named Tuple),即除了索引外还可以使用属性名访问元组中的元素。
def add(x, y=1, *z):
return x + y + sum(z)
print inspect.getargspec(add)
#ArgSpec(args=['x', 'y'], varargs='z', keywords=None, defaults=(1,))
getargvalues(frame):
仅用于栈帧,获取栈帧中保存的该次函数调用的参数值,返回元组,分别是(普通参数名的列表, *参数名, **参数名, 帧的locals())。如果是2.6以上版本,将返回一个命名元组(Named Tuple),即除了索引外还可以使用属性名访问元组中的元素。
def add(x, y=1, *z):
print inspect.getargvalues(inspect.currentframe())
return x + y + sum(z)
add(2)
#ArgInfo(args=['x', 'y'], varargs='z', keywords=None, locals={'y': 1, 'x': 2, 'z': ()})
getcallargs(func[, *args][, **kwds]):
返回使用args和kwds调用该方法时各参数对应的值的字典。这个方法仅在2.7版本中才有。
getmro(cls):
返回一个类型元组,查找类属性时按照这个元组中的顺序。如果是新式类,与cls.__mro__结果一样。但旧式类没有__mro__这个属性,直接使用这个属性会报异常,所以这个方法还是有它的价值的。
print inspect.getmro(Cat)
#(<class '__main__.Cat'>, <type 'object'>)
print Cat.__mro__
#(<class '__main__.Cat'>, <type 'object'>)
② python中如何提取一组数据中的第一列数据
直接提取会报错,把array数组转换成list,即可提取,使用numpy转换
1、直接提取尝试:
group=[[1,2],[2,3],[3,4]]
#提取第一列元素
print(group[:,1])
#Out:TypeError: list indices must be integers or slices, not tuple
2、使用numpy转换:
import numpy as np
group=[[1,2],[2,3],[3,4]]
#numpy转化
ar=np.array(group)
print(ar[:,1])
#Out:[2 3 4]
numpy详解
Numpy对象是数组,称为ndarray
维度(dimensions)称作轴(axes),轴的个数叫做秩(rank)。注:有几级中括号就有几个维度
一、ndarray.attrs:
ndarray.ndim 秩
ndarray.shape 例如一个2排3列的矩阵,它的shape属性是(2,3)
ndarray.size 数组元素的总个数
ndarray.dtype 元素类型,NumPy提供自己的数据类型
ndarray.itemsize 数组中每个元素的字节大小
二、数组创建函数:
array
asarray将输入转换成ndarray
arange
ones
zeros
empty 只分配内存空间不填充任何值
eye 创建N*N单位矩阵(对角线为1)
三、数组和标量之间的运算
numpy数组的一个特点,不用编写循环就可对数据执行批量运算,这通常称作矢量化(vectorization)。
四、基本的索引和切片
numpy数组的索引是一个内容丰富的主题,因为选取数据子集或单个元素的方式有很多。这里我仅详细介绍常用的方法,对于高级功能的方式我列举名称,读者可以等到要用的时候自行查阅资料。
③ python关于object的问题
通过+运算符连接两个数组
.
第一个:x = x + [5]
x = x + [5] 的是赋值,+运算连接数组以创建新数组也即是全新的了,所以第一个不同,
----------------------------------
x = [1, 2, 3, 4]
y = x //指向x相同的数据地址即 y=[1, 2, 3, 4]
x = x + [5] //创建新数组了,内存地址与前面的y不同了x=[1, 2, 3, 4, 5]
----------------------------------
所以print(x == y) 是False。
.
第二个:x += [5]
像+=、-=、*= 的写法是自变赋值,使用自变赋值时,仅计算一次,常规写法计算两次,自变赋值会修改原始数组,而不是创建一个新数组,所以第二个是相同的
------------------------
x = [1, 2, 3, 4]
y = x //这里不是复制数组,指向同一地址,那么x变什么y就是什么了,即 y=[1, 2, 3, 4]
x += [5] //x的数据地址没有改变 y=x=[1, 2, 3, 4, 5]
------------------------
所以print(x == y)是 True。
.
第三个不用问吧,根据上面解释,虽然地址是不同,但都是 [1, 2, 3, 4, 5] ,当然是 True。
④ python中如何打印object对象的属性值
def prn_obj(obj):
print ', '.join(['%s:%s' % item for item in obj.__dict__.items()])
⑤ python提取excel表中的数据两列
1、首先打开excel表格,在单元格中输入两列数据,需要将这两列数据进行比对相同数据。
2、然后在C1单元格中输入公式:=VLOOKUP(B1,A:A,1,0),意思是比对B1单元格中A列中是否有相同数据。
3、点击回车,即可将公式的计算结果显示出来,可以看到C1中显示的是B1在A列中找到的相同数据。
4、将公式向下填充,即可发现C列中显示出的数字即为有相同数据的,显示“#N/A”的为没有找到匹配数据的。
5、将C1-C4中的数据进行复制并粘贴成数值,即可完成相同数据的提取操作。
在实际研究中,我们经常需要获取大量数据,而这些数据很大一部分以pdf表格的形式呈现,如公司年报、发行上市公告等。面对如此多的数据表格,采用手工复制黏贴的方式显然并不可取。那么如何才能高效提取出pdf文件中的表格数据呢?
Python提供了许多可用于pdf表格识别的库,如camelot、tabula、pdfplumber等。综合来看,pdfplumber库的性能较佳,能提取出完整、且相对规范的表格。因此,本推文也主要介绍pdfplumber库在pdf表格提取中的作用。
作为一个强大的pdf文件解析工具,pdfplumber库可迅速将pdf文档转换为易于处理的txt文档,并输出pdf文档的字符、页面、页码等信息,还可进行页面可视化操作。使用pdfplumber库前需先安装,即在cmd命令行中输入:
pip install pdfplumber
pdfplumber库提供了两种pdf表格提取函数,分别为.extract_tables( )及.extract_table( ),两种函数提取结果存在差异。为进行演示,我们网站上下载了一份短期融资券主体信用评级报告,为pdf格式。任意选取某一表格,其界面如下:
接下来,我们简要分析两种提取模式下的结果差异。
(1).extract_tables( )
可输出页面中所有表格,并返回一个嵌套列表,其结构层次为table→row→cell。此时,页面上的整个表格被放入一个大列表中,原表格中的各行组成该大列表中的各个子列表。若需输出单个外层列表元素,得到的便是由原表格同一行元素构成的列表。例如,我们执行如下程序:
输出结果:
(2).extract_table( )
返回多个独立列表,其结构层次为row→cell。若页面中存在多个行数相同的表格,则默认输出顶部表格;否则,仅输出行数最多的一个表格。此时,表格的每一行都作为一个单独的列表,列表中每个元素即为原表格的各个单元格内容。若需输出某个元素,得到的便是具体的数值或字符串。如下:
输出结果:
在此基础上,我们详细介绍如何从pdf文件中提取表格数据。其中一种思路便是将提取出的列表视为一个字符串,结合Python的正则表达式re模块进行字符串处理后,将其保存为以标准英文逗号分隔、可被Excel识别的csv格式文件,即进行如下操作:
输出结果:
尽管能获得完整的表格数据,但这种方法相对不易理解,且在处理结构不规则的表格时容易出错。由于通过pdfplumber库提取出的表格数据为整齐的列表结构,且含有数字、字符串等数据类型。因此,我们可调用pandas库下的DataFrame( )函数,将列表转换为可直接输出至Excel的DataFrame数据结构。DataFrame的基本构造函数如下:
DataFrame([data,index, columns])
三个参数data、index和columns分别代表创建对象、行索引和列索引。DataFrame类型可由二维ndarray对象、列表、字典、元组等创建。本推文中的data即指整个pdf表格,提取程序如下:
其中,table[1:]表示选定整个表格进行DataFrame对象创建,columns=table[0]表示将表格第一行元素作为列变量名,且不创建行索引。输出Excel表格如下:
通过以上简单程序,我们便提取出了完整的pdf表格。但需注意的是,面对不规则的表格数据提取,创建DataFrame对象的方法依然可能出错,在实际操作中还需进行核对。
关于我们
微信公众号“爬虫俱乐部”分享实用的stata命令,欢迎转载、打赏。爬虫俱乐部是由李春涛教授领导下的研究生及本科生组成的大数据分析和数据挖掘团队。
投稿要求:
1)必须原创,禁止抄袭;
2)必须准确,详细,有例子,有截图;
⑥ python 如何查看object有哪些属性值
dir([obj]):
调用这个方法将返回包含obj大多数属性名的列表(会有一些特殊的属性不包含在内)。obj的默认值是当前的模块对象。
hasattr(obj, attr):
这个方法用于检查obj是否有一个名为attr的值的属性,返回一个布尔值。
getattr(obj, attr):
调用这个方法将返回obj中名为attr值的属性的值,例如如果attr为’bar’,则返回obj.bar。
setattr(obj, attr, val):
调用这个方法将给obj的名为attr的值的属性赋值为val。例如如果attr为’bar’,则相当于obj.bar = val。
⑦ python 新手: 已存在的object添加属性!
for obj in obj_list:
obj.c = None #直接设置属性即可
⑧ python 如何根据一个对象的属性值查询该对象其他某个属性值
在 Chrom 类中新增一个类函数,遍历存储列表并返回匹配的对象
大概写了个样例
⑨ python如何获取指定列表名和其中的值
从整个数据库中获取列名(假设数据库包含超过100行,超过50列),基于pandas中特定列中包含的特定值.
在Bkmm3(来自印度的成员)的帮助下,我在数字术语上取得了成功但在字母术语上失败了.我试过的方式是这样的:
df = pd.DataFrame({'A':['APPLE','BALL','CAT'],
'B':['ACTION','BATMAN','CATCHUP'],
'C':['ADVERTISE','BEAST','CARTOON']})
response = input("input")
for i in df.columns: if(len(df.query(i + '==' + str(response))) > 0):
print(i)`
然后输出出现错误:
Traceback (most recent call last): NameError: name 'APPLE' is not defined
你们的任何帮助都会非常感谢,谢谢. . .
解决方法:
isin / eq适用于DataFrames,您可以100%向量化:
df.columns[df.isin(['APPLE']).any()] # df.isin([response])
要么,
df.columns[df.eq(response).any()]
索引([‘A’],dtype =’对象’)
这是使用DataFrame.eval和np.logical_or的迂回方式(你是在循环列上):
df.columns[
np.logical_or.rece(
[df.eval(f"{repr(response)} in {i}") for i in df]
)]
Index(['A'], dtype='object')
⑩ 可以使用Python读取java写入redis 的object数据,并解析吗
-redis 本来就只支持存储一些基本类型(数值,字符...)的。java将对象存储在redis中是将对象序列化后的字节数组存入redis的,所以你用python取到的redis中的数据时,会带有特殊的前缀,表示序列化后java的类信息。java获取这些数据的时候会有反序列的操作,所以不影响。但python取到数据后是无法解析的。
-Java 存储与python共享数据时,应避免将String字符串当做对象进行序列化存储,应直接以字符串的形式存储,如果需要共享对象,对象转化为json串存储。
-另外spring的redisTemplate 进行Hash操作时,就算你存储的是String类型的数据,也会被当做String对象序列化后存储。所以 如果过要操作redis的hash结构,建议实例化一个Jedis客户端进行操作。