❶ 为什么说python速度虽然慢但它工作效率高啊!
因为某个语言速度快而选择其为开发你应用的语言是不成熟优化的一种体现。是的,Python 比较慢,但其牺牲性能可以提升工作效率。
写在前面
让我们来讨论一个我最近一直在思考的问题:Python 的性能。顺便说一下,我是 Python 的忠实拥趸,我在各种情况下都会积极尝试使用 Python 来解决问题。大家对 Python 最大的抱怨就是它的速度慢。有些人甚至因为 Python 的速度不如某个语言而拒绝使用它。本文中我将阐述,即便 Python 这么慢,为什么还值得你对它进行尝试。记住加企鹅扣444五一三089可以从基础到开发mianfei学习python。
速度不再关键
之前,程序的运行时间相当长。CPU 资源和内存资源都十分珍贵,程序的运行时间在这种情况下是一个重要指标。计算机本身十分昂贵,当然还有随之而来昂贵的电力消耗。优化这些资源就十分必要,因为在商业世界有一个永恒的规则:
优化你最昂贵的资源。
历史上,程序最昂贵的资源是计算机的运行时间。这也就导致了对计算机科学的研究更专注于不同算法的效率。然而在当下环境中,这已经不再适用,现在硅的价格已经十分便宜了。是真的非常便宜。运行时间不再是你最昂贵的资源。一个公司最昂贵的资源现在是其雇佣的员工的时间。也就是正在看这篇文章的你自己的时间。对现在的公司来说,完成项目比让项目跑得更快更重要。这点非常重要,这里再次强调:
完成项目比让项目跑得更快更重要。
你也许会说“我们公司对性能要求很高,我构建的网站应用需要所有的请求在 X 毫秒内返回。”或者“客户认为我们的应用慢而放弃使用我们的应用。”在这里我不是说速度根本不重要,我只是想说明速度不再是最重要的指标,因为它不再是你最昂贵的资源。
速度!
速度是唯一重要的事情
在编程的世界中当你提到速度,一般是指程序的性能,也就是 CPU 周期。而当你的 CEO 提到速度,他通常指的是业务上的速度,其中最重要的是投入市场的时间。你的产品或网络应用有多快并不重要,应用采用哪种语言编写的也不重要,甚至是使项目运行投入了多少资金都不重要。最终,唯一能够让你的公司存活下来的是产品投入市场的时间。
这里不是指初创公司观念中的盈利时间,而更多是从想法转换到实际消费者手中所花费的时间。在商业世界中能存活下来的唯一方法是比你的竞争对手更快地进行创新。如果你的竞争对手比你更早地发布产品,那么你有再多的好点子也无济于事。你必须成为市场的第一个进入者,或至少要赶上领先的节奏。一旦你掉队了,那么你就大势已去。
在商业世界中能存活下来的唯一方法是比你竞争对手更快地进行创新。
❷ Python运行效率低的原因有哪些
Python的设计哲学是 第一能让人看懂,附带能在机器上运行,
c语言的设计哲学是 第一能让机器快速运行 附带能让人看懂
❸ python和java哪个好他们有什么区别
Java
Java源自C,拥有跨平台、面向对象、泛型编程的特性,非常受企业的喜欢。
其次,Java语言还具有较高的安全特性,因此Java经常被用在网络环境中。
同时,Java对通过网络下载的类具有一个安全防范机制,如分配不同的名字空间以防替代本地的同名类、字节代码检查,并提供安全管理机制让Java应用设置安全哨兵。
Python
Python是一种解释型脚本语言,其在设计上也坚持了清晰划一的风格,这使得Python成为易读、易维护的语言。
相比于其他语言,Python中的语言语法和语义要简单得多,而且代码也具有可读性。在大多数情况下,为了解决某一特定的问题,Python编写所需代码,要比其他流行语言所需的代码少得多。
因此,对于新手来说,Python是一种很容易上手,并便于维护的语言。
Java和Python的区别:
1.Python比Java简单,学习成本低,开发效率高;
2.Java运行效率高于Python,Python效率低;
3.Java相关资料多,尤其是中文资料;
4.Java版本比较稳定,Python2和3不兼容导致大量类库失效;
5.Java开发偏向于软件工程,Python更适合小型开发;
6.Java偏向于商业开发,Python适合于数据分析;
7.Java是一种静态类型语言,Python是一种动态类型语言;
8.Java中的所有变量需要先声明才能使用,Python中的变量不需要声明类型;
9.Java编译以后才能运行,Python直接就可以运行;
10.实现同一功能时,JAVA要敲的键盘次数一般要比Python多很多。
❹ python的开发效率高吗
相对于其他语言来说,python因为有丰富的第三方函数库可以调用,因此,开发效率较高。
❺ python语言运行速度如此差
这就要说到 Python 类语言和 C 类语言的主要区别了,Python 属于解释型语言,通俗来说就是你可以一句一句地输入,而 Python 解释器(Interpreter)可以一句一句地执行,而 C 语言属于编译型语言,无法做到这一点,只能一次性输入完成,编译成一个完整的程序再执行,而这个编译的过程由于现代编译器做了非常多的优化,并且你的程序没有输入只有输出,每次运行都出固定的结果,所以极有可能被编译器优化成为了只有一条输出语句(实际情况可能要复杂一些),总的来说就是由于二者之间原理的差异导致了性能的差异,你可以搜一搜相关的资料,关掉 C 语言编译时的优化,再看一下性能,或者将固定的那些值改为运行时需要输入再看一下效果。
Python 相较于 C 的优势有很多,性能这一方面你不需要关心,做出一个足够复杂的程序,它们之间运行效率差不了多少的。
❻ Python 的开发效率真的比 Java高吗
不同的语言是不同的工具啊,正所谓干什么活儿就用趁手的工具。比如砍树你就用斧子割草你就用镰刀呗。没有说。用镰刀干活儿就一定比用斧子干活儿效率高的,你分干啥活儿。
❼ python有哪些特点和优点
显着的优点
Python 语言拥有诸多的优点,这其中,以下几个优点特别显着:
简单易学:Python语言相对于其他编程语言来说,属于比较容易学习的一门编程语言,它注重的是如何解决问题而不是编程语言的语法和结构。正是因为Python语言简单易学,所以,已经有越来越多的初学者选择Python语言作为编程的入门语言。例如,在浙江省 2017年高中信息技术改革中,《算法与程序设计》课程将使用 Python语言替换原有的VB 语言。
语法优美:Python语言力求代码简洁、优美。在Python语言中,采用缩进来标识代码块,通过减少无用的大括号,去除语句末尾的分号等视觉杂讯,使得代码的可读性显着提高。阅读一段良好的Python程序就感觉像是在读英语一样,它使你能够专注于解决问题,而不用太纠结编程语言本身的语法。
丰富强大的库:Python语言号称自带电池(Battery Included),寓意是Python语言的类库非常的全面,包含了解决各种问题的类库。无论实现什么功能,都有现成的类库可以使用。如果一个功能比较特殊,标准库没有提供相应的支持,那么,很大概率也会有相应的开源项目提供了类似的功能。合理使用Python的类库和开源项目,能够快速的实现功能,满足业务需求。
开发效率高:Python的各个优点是相辅相成的。例如,Python语言因为有了丰富强大的类库,所以,Python的开发效率能够显着提高。相对于 C、C++ 和 Java等编译语言,Python开发者的效率提高了数倍。实现相同的功能,Python代码的文件往往只有 C、C++和Java代码的1/5~1/3。虽然Python语言拥有很多吸引人的特性,但是,各大互联网公司广泛使用Python语言,很大程度上是因为Python语言开发效率高这个特点。开发效率高的语言,能够更好的满足互联网快速迭代的需求,因此,Python语言在互联网公司使用非常广泛。
应用领域广泛:Python语言的另一大优点就是应用领域广泛,工程师可以使用Python 做很多的事情。例如,Web开发、网络编程、自动化运维、Linux系统管理、数据分析、科学计算、人工智能、机器学习等等。Python语言介于脚本语言和系统语言之间,我们根据需要,既可以将它当做一门脚本语言来编写脚本,也可以将它当做一个系统语言来编写服务。
不可忽视的缺点
毫无疑问,Python确实有用很多的优点,每一个优点看起来都非常吸引人。但是,Python并不是没有缺点的,最主要的缺点有以下几个:
Python的执行速度不够快。当然,这也不是一个很严重的问题,一般情况下,我们不会拿Python语言与C/C++这样的语言进行直接比较。在Python语言的执行速度上,一方面,网络或磁盘的延迟,会抵消掉部分Python本身消耗的时间;另一方面,因为Python 特别容易和C结合起来,因此,我们可以通过分离一部分需要优化速度的应用,将其转换为编译好的扩展,并在整个系统中使用Python脚本将这部分应用连接起来,以提高程序的整体效率。
Python的GIL锁限制并发:Python的另一个大问题是,对多处理器支持不好。如果读者接触Python时间比较长,那么,一定听说过GIL这个词。GIL是指Python全局解释器锁(Global Interpreter Lock),当Python的默认解释器要执行字节码时,都需要先申请这个锁。这意味着,如果试图通过多线程扩展应用程序,将总是被这个全局解释器锁限制。当然,我们可以使用多进程的架构来提高程序的并发,也可以选择不同的Python实现来运行我们的程序。
Python 2与Python 3不兼容: 如果一个普通的软件或者库,不能够做到后向兼容,那么,它会被用户无情的抛弃了。在Python中,一个槽点是Python 2与Python 3不兼容。因为Python没有向后兼容,给所有的Python工程师带来了无数的烦恼。
上述就是总结的Python语言的优缺点。总体来说,Python目前的发展还是非常不错的。借着人工智能时代的东风,Python开发人员的未来一定会很光明。
❽ 为什么都说爬虫PYTHON好
python上手容易,第三方库多(go现在第三方库也多)。
如果不考虑采集速度,不用登陆——requests,单线程,简单的代码如下:
url = "http://dd.com"
html = requests.get(url)
html.encoding=('GBK') #避免编码问题 如有报错,另外测试
print (html.text[:1000]) #输出1000个字符,避免ide假死。
本人没学过java c#,不清楚他们两个一个简单爬虫的代码量,想来最起码比python的要多。
不过说实话python的工作机会没有 java c#的多,也就是说别想着花钱去培训班培训了几个月,就能找到月入过万的工作。
python的运行效率比其他编程语言要差,不考虑效率的情况下,可以用python写写小代码,有钱的可以写scrapy代码,堆服务器做分布式爬虫。
❾ python为啥运行效率不高
原因:1、python是动态语言;2、python是解释执行,但是不支持JIT;3、python中一切都是对象,每个对象都需要维护引用计数,增加了额外的工作。4、python GIL;5、垃圾回收。
当我们提到一门编程语言的效率时:通常有两层意思,第一是开发效率,这是对程序员而言,完成编码所需要的时间;另一个是运行效率,这是对计算机而言,完成计算任务所需要的时间。编码效率和运行效率往往是鱼与熊掌的关系,是很难同时兼顾的。不同的语言会有不同的侧重,python语言毫无疑问更在乎编码效率,life is short,we use python。
虽然使用python的编程人员都应该接受其运行效率低的事实,但python在越多越来的领域都有广泛应用,比如科学计算 、web服务器等。程序员当然也希望python能够运算得更快,希望python可以更强大。
首先,python相比其他语言具体有多慢,这个不同场景和测试用例,结果肯定是不一样的。这个网址给出了不同语言在各种case下的性能对比,这一页是python3和C++的对比,下面是两个case:
从上图可以看出,不同的case,python比C++慢了几倍到几十倍。
python运算效率低,具体是什么原因呢,下列罗列一些:
第一:python是动态语言
一个变量所指向对象的类型在运行时才确定,编译器做不了任何预测,也就无从优化。举一个简单的例子:r = a + b。a和b相加,但a和b的类型在运行时才知道,对于加法操作,不同的类型有不同的处理,所以每次运行的时候都会去判断a和b的类型,然后执行对应的操作。而在静态语言如C++中,编译的时候就确定了运行时的代码。
另外一个例子是属性查找,关于具体的查找顺序在《python属性查找》中有详细介绍。简而言之,访问对象的某个属性是一个非常复杂的过程,而且通过同一个变量访问到的python对象还都可能不一样(参见Lazy property的例子)。而在C语言中,访问属性用对象的地址加上属性的偏移就可以了。
第二:python是解释执行,但是不支持JIT(just in time compiler)。虽然大名鼎鼎的google曾经尝试Unladen Swallow 这个项目,但最终也折了。
第三:python中一切都是对象,每个对象都需要维护引用计数,增加了额外的工作。
第四:python GIL,GIL是Python最为诟病的一点,因为GIL,python中的多线程并不能真正的并发。如果是在IO bound的业务场景,这个问题并不大,但是在CPU BOUND的场景,这就很致命了。所以笔者在工作中使用python多线程的情况并不多,一般都是使用多进程(pre fork),或者在加上协程。即使在单线程,GIL也会带来很大的性能影响,因为python每执行100个opcode(默认,可以通过sys.setcheckinterval()设置)就会尝试线程的切换,具体的源代码在ceval.c::PyEval_EvalFrameEx。
第五:垃圾回收,这个可能是所有具有垃圾回收的编程语言的通病。python采用标记和分代的垃圾回收策略,每次垃圾回收的时候都会中断正在执行的程序,造成所谓的顿卡。infoq上有一篇文章,提到禁用Python的GC机制后,Instagram性能提升了10%。感兴趣的读者可以去细读。
推荐课程:Python机器学习(Mooc礼欣、嵩天教授)
❿ Python 适合大数据量的处理吗
python可以处理大数据,python处理大数据不一定是最优的选择。适合大数据处理。而不是大数据量处理。 如果大数据量处理,需要采用并用结构,比如在hadoop上使用python,或者是自己做的分布式处理框架。
python的优势不在于运行效率,而在于开发效率和高可维护性。针对特定的问题挑选合适的工具,本身也是一项技术能力。
Python处理数据的优势(不是处理大数据):
1. 异常快捷的开发速度,代码量巨少
2. 丰富的数据处理包,不管正则也好,html解析啦,xml解析啦,用起来非常方便
3. 内部类型使用成本巨低,不需要额外怎么操作(java,c++用个map都很费劲)
4. 公司中,很大量的数据处理工作工作是不需要面对非常大的数据的
5. 巨大的数据不是语言所能解决的,需要处理数据的框架(hadoop, mpi)虽然小众,但是python还是有处理大数据的框架的,或者一些框架也支持python。
(10)python运行效率高不高扩展阅读:
Python处理数据缺点:
Python处理大数据的劣势:
1、python线程有gil,通俗说就是多线程的时候只能在一个核上跑,浪费了多核服务器。在一种常见的场景下是要命的:并发单元之间有巨大的数据共享或者共用(例如大dict)。
多进程会导致内存吃紧,多线程则解决不了数据共享的问题,单独的写一个进程之间负责维护读写这个数据不仅效率不高而且麻烦
2、python执行效率不高,在处理大数据的时候,效率不高,这是真的,pypy(一个jit的python解释器,可以理解成脚本语言加速执行的东西)能够提高很大的速度,但是pypy不支持很多python经典的包,例如numpy。
3. 绝大部分的大公司,用java处理大数据不管是环境也好,积累也好,都会好很多。
参考资料来源:网络-Python