‘壹’ python实现彩色散点图绘制(利用色带对散点图进行颜色渲染)
接受自己的普通,然后全力以赴的出众,告诉自己要努力,但不要着急....
当然, 这个结果并不是我真正想要的,Pass, 太丑了!
好吧,安排,我们先看下实现后的效果!
这个效果自然就比之前的好多了!
实现python散点图绘制需要用到matplotlib库, matplotlib库是专门用于可视化绘图的工具库;学习一个新的库当然看官方文档了: https://www.osgeo.cn/matplotlib/contents.html
实现思路:
matplotlib.pyplot.scatter() 函数是专门绘制散点图的函数: https://www.osgeo.cn/matplotlib/api/_as_gen/matplotlib.pyplot.scatter.html?highlight=scatter#matplotlib.pyplot.scatter
matplotlib.pyplot.scatter ( x, y , s=None , c=None , marker=None , cmap=None , norm=None , vmin=None , vmax=None , alpha=None , linewidths=None , verts=None , edgecolors=None , ***, data=None , ** kwargs ) **
plt.scatter(observation, estimate, c=Z1, cmap=colormap, marker=".", s=marker_size, norm=colors.LogNorm(vmin=Z1.min(), vmax=0.5 * Z1.max()))
其中:
1、c参数为计算的散点密度;
2、cmap为色带(matplotlib里面自带了很多色带可供选择),参见:
https://www.osgeo.cn/matplotlib/gallery/color/colormap_reference.html
3、由于计算的散点密度数值大小分散,因此利用norm参数对散点密度Z1进行归一化处理(归一化方式很多,参见colors类),并给归一化方式设置色带刻度的最大最小值vmin和vmax(一般这两个参数就是指定散点密度的最小值和最大值),这样就建立起了密度与色带的映射关系。
https://matplotlib.org/tutorials/colors/colormapnorms.html
(这里的结果与前面展示的相比改变了计算散点密度的半径:radius = 3以及绘制散点图的散点大小marksize)
作者能力水平有限,欢迎各位批评指正!
‘贰’ 在python上数据归一化后怎样还原
看到各位大佬们都会把原始数据进行归一化,再处理。可是都没有人讲怎样把归一化的数据还原回来。
目前可找到的方法就只有matlab上的这个函数:
xtt = mapminmax('reverse',y1,ps)
在python上,就看到许多人推荐用sklearn进行归一化,但没有还原的方法呀。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
你要问我为什么 要还原?
把日期和气温的数据放到模型里跑半天,想看看下一天的气温,结果出来一个0.837之类东西。
sklearn中transform用来归一化后,可以用inverse_transform还原。
‘叁’ 在python上数据归一化后怎样还原
归一化用fit_transform()
数据还原用inverse_transform()
‘肆’ python数据分析与应用第三章代码3-5的数据哪来的
savetxt
import numpy as np
i2 = np.eye(2)
np.savetxt("eye.txt", i2)
3.4 读入CSV文件
# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800
c,v=np.loadtxt('data.csv', delimiter=',', usecols=(6,7), unpack=True) #index从0开始
3.6.1 算术平均值
np.mean(c) = np.average(c)
3.6.2 加权平均值
t = np.arange(len(c))
np.average(c, weights=t)
3.8 极值
np.min(c)
np.max(c)
np.ptp(c) 最大值与最小值的差值
3.10 统计分析
np.median(c) 中位数
np.msort(c) 升序排序
np.var(c) 方差
3.12 分析股票收益率
np.diff(c) 可以返回一个由相邻数组元素的差
值构成的数组
returns = np.diff( arr ) / arr[ : -1] #diff返回的数组比收盘价数组少一个元素
np.std(c) 标准差
对数收益率
logreturns = np.diff( np.log(c) ) #应检查输入数组以确保其不含有零和负数
where 可以根据指定的条件返回所有满足条件的数
组元素的索引值。
posretindices = np.where(returns > 0)
np.sqrt(1./252.) 平方根,浮点数
3.14 分析日期数据
# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800
dates, close=np.loadtxt('data.csv', delimiter=',', usecols=(1,6), converters={1:datestr2num}, unpack=True)
print "Dates =", dates
def datestr2num(s):
return datetime.datetime.strptime(s, "%d-%m-%Y").date().weekday()
# 星期一 0
# 星期二 1
# 星期三 2
# 星期四 3
# 星期五 4
# 星期六 5
# 星期日 6
#output
Dates = [ 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 1. 2. 4. 0. 1. 2. 3. 4. 0.
1. 2. 3. 4.]
averages = np.zeros(5)
for i in range(5):
indices = np.where(dates == i)
prices = np.take(close, indices) #按数组的元素运算,产生一个数组作为输出。
>>>a = [4, 3, 5, 7, 6, 8]
>>>indices = [0, 1, 4]
>>>np.take(a, indices)
array([4, 3, 6])
np.argmax(c) #返回的是数组中最大元素的索引值
np.argmin(c)
3.16 汇总数据
# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800
#得到第一个星期一和最后一个星期五
first_monday = np.ravel(np.where(dates == 0))[0]
last_friday = np.ravel(np.where(dates == 4))[-1]
#创建一个数组,用于存储三周内每一天的索引值
weeks_indices = np.arange(first_monday, last_friday + 1)
#按照每个子数组5个元素,用split函数切分数组
weeks_indices = np.split(weeks_indices, 5)
#output
[array([1, 2, 3, 4, 5]), array([ 6, 7, 8, 9, 10]), array([11,12, 13, 14, 15])]
weeksummary = np.apply_along_axis(summarize, 1, weeks_indices,open, high, low, close)
def summarize(a, o, h, l, c): #open, high, low, close
monday_open = o[a[0]]
week_high = np.max( np.take(h, a) )
week_low = np.min( np.take(l, a) )
friday_close = c[a[-1]]
return("APPL", monday_open, week_high, week_low, friday_close)
np.savetxt("weeksummary.csv", weeksummary, delimiter=",", fmt="%s") #指定了文件名、需要保存的数组名、分隔符(在这个例子中为英文标点逗号)以及存储浮点数的格式。
.png
格式字符串以一个百分号开始。接下来是一个可选的标志字符:-表示结果左对齐,0表示左端补0,+表示输出符号(正号+或负号-)。第三部分为可选的输出宽度参数,表示输出的最小位数。第四部分是精度格式符,以”.”开头,后面跟一个表示精度的整数。最后是一个类型指定字符,在例子中指定为字符串类型。
numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs)
>>>def my_func(a):
... """Average first and last element of a 1-D array"""
... return (a[0] + a[-1]) * 0.5
>>>b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>>np.apply_along_axis(my_func, 0, b) #沿着X轴运动,取列切片
array([ 4., 5., 6.])
>>>np.apply_along_axis(my_func, 1, b) #沿着y轴运动,取行切片
array([ 2., 5., 8.])
>>>b = np.array([[8,1,7], [4,3,9], [5,2,6]])
>>>np.apply_along_axis(sorted, 1, b)
array([[1, 7, 8],
[3, 4, 9],
[2, 5, 6]])
3.20 计算简单移动平均线
(1) 使用ones函数创建一个长度为N的元素均初始化为1的数组,然后对整个数组除以N,即可得到权重。如下所示:
N = int(sys.argv[1])
weights = np.ones(N) / N
print "Weights", weights
在N = 5时,输出结果如下:
Weights [ 0.2 0.2 0.2 0.2 0.2] #权重相等
(2) 使用这些权重值,调用convolve函数:
c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)
sma = np.convolve(weights, c)[N-1:-N+1] #卷积是分析数学中一种重要的运算,定义为一个函数与经过翻转和平移的另一个函数的乘积的积分。
t = np.arange(N - 1, len(c)) #作图
plot(t, c[N-1:], lw=1.0)
plot(t, sma, lw=2.0)
show()
3.22 计算指数移动平均线
指数移动平均线(exponential moving average)。指数移动平均线使用的权重是指数衰减的。对历史上的数据点赋予的权重以指数速度减小,但永远不会到达0。
x = np.arange(5)
print "Exp", np.exp(x)
#output
Exp [ 1. 2.71828183 7.3890561 20.08553692 54.59815003]
Linspace 返回一个元素值在指定的范围内均匀分布的数组。
print "Linspace", np.linspace(-1, 0, 5) #起始值、终止值、可选的元素个数
#output
Linspace [-1. -0.75 -0.5 -0.25 0. ]
(1)权重计算
N = int(sys.argv[1])
weights = np.exp(np.linspace(-1. , 0. , N))
(2)权重归一化处理
weights /= weights.sum()
print "Weights", weights
#output
Weights [ 0.11405072 0.14644403 0.18803785 0.24144538 0.31002201]
(3)计算及作图
c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)
ema = np.convolve(weights, c)[N-1:-N+1]
t = np.arange(N - 1, len(c))
plot(t, c[N-1:], lw=1.0)
plot(t, ema, lw=2.0)
show()
3.26 用线性模型预测价格
(x, resials, rank, s) = np.linalg.lstsq(A, b) #系数向量x、一个残差数组、A的秩以及A的奇异值
print x, resials, rank, s
#计算下一个预测值
print np.dot(b, x)
3.28 绘制趋势线
>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2], [3, 4, 5]])
>>> np.ones_like(x) #用1填充数组
array([[1, 1, 1], [1, 1, 1]])
类似函数
zeros_like
empty_like
zeros
ones
empty
3.30 数组的修剪和压缩
a = np.arange(5)
print "a =", a
print "Clipped", a.clip(1, 2) #将所有比给定最大值还大的元素全部设为给定的最大值,而所有比给定最小值还小的元素全部设为给定的最小值
#output
a = [0 1 2 3 4]
Clipped [1 1 2 2 2]
a = np.arange(4)
print a
print "Compressed", a.compress(a > 2) #返回一个根据给定条件筛选后的数组
#output
[0 1 2 3]
Compressed [3]
b = np.arange(1, 9)
print "b =", b
print "Factorial", b.prod() #输出数组元素阶乘结果
#output
b = [1 2 3 4 5 6 7 8]
Factorial 40320
print "Factorials", b.cumprod()
#output
‘伍’ 数据的归一化处理
归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在某个区间上是统计的坐标分布。归一化有同一、统一和合一的意思。
1、(0,1)标准化:
这是最简单也是最容易想到的方法,通过遍历feature vector里的每一个数据,将Max和Min的记录下来,并通过Max-Min作为基数(即Min=0,Max=1)进行数据的归一化处理:
LaTex:{x}_{normalization}=frac{x-Min}{Max-Min}
Python实现:
‘陆’ [Python] 数组归一化
将数组归一化
归一化:将一组数据变化到某个固定区间中,通常,这个区间是[0,1],广义的讲,可以是各种区间,比如映射到[0,1]一样可以继续映射到其他范围,图像中可能会映射到[0,255],其他情况可能映射到[-1,1]。
‘柒’ 在python上数据归一化后怎样还原
数据归一化方法有两种形式,一种是把数变为(0,1)之间的小数,一种是把有量纲表达式变为无量纲表达式。1、把数变为(0,1)之间的小数主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。2、是把有量纲表达式变为无量纲表达式归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。
‘捌’ 教你如何用python6个步骤搞定金融数据挖掘预处理
数据预处理没有标准的流程,通常针对不同的任务和数据集属性的不同而不同。下面就一起看下常用六大步完成数据预处理。
Step 1:导入相关模块
Step 2:获取数据
特征构造
Step 3:处理缺失值
Step 4:分类数据编码
创建虚拟变量
Step 5:划分训练集和测试集
Step 6:特征标准化
数据变换十大秘诀
数据变换[1]是将数据集的每个元素乘以常数;也就是说,将每个数变换为,其中,和都是实数。数据变换将可能改变数据的分布以及数据点的位置。
数据标准化[2](有时称为 z-score 或 standar score)是已重新缩放为平均值为零且标准偏差为1的变量。对于标准化变量,每种情况下的值在标准化变量上的值都表明它与原始变量的均值(或原始变量的标准偏差)的差值。
归一化数据 是将数据缩放到0到1范围内。
Binarizing Data
二值化[3]是将任何实体的数据特征转换为二值化的向量以使分类器算法更高效的过程。在一个简单的示例中,将图像的灰度从0-255光谱转换为0-
1 光谱就是二值化。
Mean Removal
去均值法 是将均值从每一列或特征中移除,使其以零为中心的过程。
One Hot Encoding
独热编码[4]是将分类变量转换为可以提供给ML算法以更好地进行预测的形式的过程。
Label Encoding
标签编码 适用于具有分类变量并将数据转换为数字的数据。
fit
transform
词向量 用于带有标签和数字的数据。此外,词向量可用于提取数据。
获取特征名称
Polynomial Features
多项式特征 用于生成多项式特征和交互特征。它还生成了一个新的特征矩阵数据,该数据是由所有次数小于或等于指定次数的特征的多项式组合组成的。
截距项
填补 (如用均值填补缺失值),它用列或特性数据中的平均值替换缺失的值
‘玖’ Python怎么对数据框中的两列进行归一化
可以使用sklearn库中的MinMaxScaler函数:
```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
data[['col1', 'col2']] = scaler.fit_transform(data[['col1', 'col2']])
```
‘拾’ python怎么做均值方差归一化
可以用线性归一化,就是找到最大值和最小值。
平均数是表示一组数据集中趋势的量数,是指在一组数据中所有数据之和再除以这组数据的个数。它是反映数据集中趋势的一项指标。解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。