1. 最全的pandas面试基础100题目
在进行下面的题目操作时,一定要先导入上面的两个数据分析包 pandas、numpy
1. 如何用python的列表创建一个series?
输出:
一个series是一个一维的标记数组,可以容纳任何数据类型(整数、字符串、浮点数、Python对象等)。必须记住,与Python列表不同,一个series总是包含相同类型的数据。
2.如何使用列表创建一个DataFrame?
输出:
3.如何使用Series 字典对象生成 DataFrame?
输出:
4.如何在pandas中创建一个空的DataFrame?
要创建一个完全空的pandas dataframe,我们使用以下操作:
输出:
已知有这样的数据,如何进行查看
输出:
2.如何查看尾部数据?
3.如何快速查看数据的统计摘要?
4.如何查询索引和列名?
1.简述Pandas Index
在panda中建立索引意味着简单地从DataFrame中选择特定的数据行和列。
pandas支持四种类型的多轴索引,它们是:
它们统称为索引器。这些是迄今为止索引数据最常见的方法。这四个函数有助于从DataFrame获取元素、行和列。
2.Pandas 定义重新索引(Reindexing)
重新索引会更改DataFrame的行标签和列标签。重新索引意味着使数据符合特定轴上给定的一组标签。
多个操作可以通过像这样的索引来完成:
输出:
3.如何设置索引?
panda set_index() 是一种将列表、序列或dataframe设置为dataframe索引的方法。
语法:
DataFrame.set_index(keys, inplace=False)
参数:
改变索引列
在本例中,名称列被用作DataFrame的索引列
输出:
如输出图像所示,以前索引列是一系列数字
Before Operation –
After Operation
4.如何重置索引?
Pandas Series.reset_index()
函数的作用是:生成一个新的DataFrame或带有重置索引的Series。
例1: 使用 Series.reset_index() 函数重置给定Series对象的索引
输出:
现在,我们将使用Series.reset_index()函数来重置给定的series对象的索引
输出 :
从输出中可以看到,该 Series.reset_index() 函数已将给定Series对象的索引重置为默认值。它保留了索引,并将其转换为列。
1.1先创建数据:
1.2选择单列,产生 Series
详见 按标签选择 。
2.1用标签提取一行数据:
详见 按位置选择 。
3.1用整数位置选择:
4.1用单列的值选择数据:
5.1用索引自动对齐新增列的数据:
1.如何得到一个数列的最小值、第25百分位、中值、第75位和最大值?
输出:
Pandas dataframe.mean(axis=None) 函数返回所请求轴(axis=0代表对列进行求平均值,axis=1代表对行进行求平均值)的值的平均值。
示例: 使用 mean() 函数查找索引轴上所有观测值的平均值。
输出:
让我们使用datafame .mean()函数来查找索引轴上的平均值。
3.如何将函数应用到DataFrame中的每个数据元素?
可以使用 apply() 函数以便将函数应用于给定dataframe中的每一行。让我们来看看我们完成这项任务的方式。
实例:
输出:
4.如何在panda中获得一个DataFrame的行数和列数?
输出:
获取df的行和列计数
输出:
5.如何在panda DataFrame中获得列值的总和?
Pandas dataframe.sum() 函数返回所请求轴的值的和
语法: DataFrame.sum(axis=None, skipna=None, )
参数:
示例1: 使用 sum() 函数查找索引轴上所有值的总和
现在求出沿索引轴的所有值的和。我们将跳过计算和时的NaN值。
输出:
如何将新行追加到pandas DataFrame?
Pandas dataframe.append() 函数的作用是:将其他dataframe的行追加到给定的dataframe的末尾,返回一个新的dataframe对象。
语法:
DataFrame.append( ignore_index=False,)
参数:
示例1: 创建两个数据框,然后将第二个附加到第一个。
现在将df2附加到df1的末尾
输出:
请注意,第二个DataFrame的索引值保留在附加的DataFrame中。如果我们不希望发生这种情况,则可以设置ignore_index = True。
输出 :
“group by” 指的是涵盖下列一项或多项步骤的处理流程:
详见 分组 。
输出:
1.先分组,再用 sum() 函数计算每组的汇总数据:
输出:
2.多列分组后,生成多层索引,也可以应用 sum 函数:
输出:
如何将numpy数组转换为给定形状的DataFrame?
输出:
输出:
透视表是一种可以对数据动态排布并且分类汇总的表格格式,在pandas中它被称作pivot_table。
pivot_table(data, values=None, index=None, columns=None)
参数:
详见: 数据透视表
打印输出:
用上述数据生成数据透视表非常简单:
返回结果:
1.如何将列添加到pandas DataFrame?
源数据:
输出:
输出:
2.如何向panda DataFrame添加索引、行或列?
向DataFrame添加索引
如果您创建了一个DataFrame, panda允许将输入添加到索引参数中。它将确保您拥有所需的索引。否则,在默认情况下,DataFrame包含一个数值索引,该索引从0开始,在DataFrame的最后一行结束。
向DataFrame添加行、列
我们可以使用.loc、iloc和ix将行、列插入到DataFrame中。
添加具有特定索引名的行:
输出:
3.如何在panda DataFrame上进行迭代?
您可以通过结合使用for循环和对DataFrame的iterrows()调用来遍历DataFrame的行。
输出:
4.我们如何排序DataFrame?
我们可以通过以下几种有效地在DataFrame中执行排序:
(1)按标签
可以使用sort_index()方法对数据dataframe进行排序。可以通过传递axis参数和排序顺序来实现。默认情况下,按升序对行标签进行排序。
2. python面试必备题目有哪些
Q:你做一个自我介绍吧?
旁白:其实遇到好几家面试官都让我做自我介绍了,该如何自我介绍阳哥估计都会背了,好玩(恶心)的是在万达信息面试,面试了3个技术官,每个人都分别让我做了自我介绍,尼玛,他们3个就不会沟通一下要问我啥吗,一个问题至于问我3遍吗~:funk:阳哥是敢怒不敢言,毕竟在人家的地盘。
PS:自我介绍的内容就不说了,每个人都是独特的,我就跟大家说一下应该如何自我介绍吧。
一个优良的自我介绍会给面试官留下深刻的印象,大部分情况下,所谓的面试好坏其实看的就是你给面试官留下的印象怎么样了,我们用俗语叫感觉。
自我介绍应该分以下几个部分,按照一定的逻辑连贯起来。如果连贯不起来,或者不够熟练一定在台下多背几遍,多讲几遍,但是面试的时候不要说的跟背过似的,高境界就是让面试官感觉你是临场发挥的,却又比背的都好。
1)个人基本信息(姓名、年龄、老家、居住地等)
2)自己来自哪里(工作地点),是干什么的(给自己一个清晰的定位,比如:我是一名Android开发工程师),担任过什么职务、做过什么样的项目
3)自己为何来贵公司面试
4)最后祝愿(希望能得到贵公司的认可等等,不用太多,一两句话就ok)
Q:介绍一下你做过的项目吧?
PS:黑马那么多项目,随便准备3个就ok了。
介绍项目大概的思路如下:
1)这个项目是干什么的(比如是一个类似网易新闻的地方新闻客户端,或者类似美团的o2o,或者类似豌豆荚的一个应用市场,或者类似淘宝的购物平台)?解释就是拿一个市场上耳熟能详的应用跟自己的应用做类比,省的面试官听的云里雾里的。
2)自己负责了哪些模块(功能)的职责(比如负责系统的架构,核心代码的编写,xx功能模块的开发等等)
3)自己在这个项目中担当的责任(比如,这个项目是自己独立开发的,这个项目是和另外一个同事一起架构一起开发的,这个项目是自己负责了几个核心模块)
4)项目中都用到了哪些技术
5)从项目中学到了哪些东西(可以从技术方向和业务两个方向入手)
旁白:面试官问的很多技术性问题跟之前问的都大同小异,因此这里只给出有特色且技术含量高的。阳哥正在写面试宝典,该宝典核心内容针对的还是技术问题,阳哥会从javase基础到javase高级,从Android基础到Android高级以及到Android项目依次展开分析,其次也会写一些常见的非技术性问题,敬请期待~
Q:①在Listview的优化中,我们为何使用ConvertView?②为何使用ViewHolder?③你认为哪个更能解决问题?④你认为view.inflate和view.findviewById哪个更耗时,为什么?⑤如果这两个AP让你重新写,你怎么写?
PS:上面的问题,阳哥认为是面试以来遇到很难的一个,也是很有技术含量的一道题。前一半问题还好回答,最后一个问题真的需要发挥想象了。
A:①使用ConvertView可以实现对view的复用,这样大大节约了每次创建对象的时间,提升了ListView的显示效率。②使用ViewHolder作为内部类,可以将view的子控件封装在ViewHolder类中,然后通过View.setTag(ViewHolder)将view和ViewHolder进行绑定,这样我们就不用每次都调用view的findViewById(id)方法来查找控件。③使用ConvertView解决了一大部分问题,使用ViewHolder实现了控件换时间的问题,因为给View对象设置一个Tag本身就是占用内存的,因此ViewHolder的使用还是需要区分不同的应用场景的, 没有绝对的好与不好。如果内存足够需要高效则ViewHolder建议使用,否则不建议使用。④当然是view.inflate耗时,这个函数完成的功能是把xml布局文件通过pullParser的形式给解析到内存中,需要io,需要递归子节点。⑤我其实还不太相信我写出来的代码比Google官方写的好,如果让我写的话我可能会这样考虑,当用户在使用view.inflate的时候将多个id作为数组添加到形参中,这样在初始化view的使用我就可以给这个view直接调用setTag方法绑定需要的子控件。不过这个原生方法其实也应该保留共不同的需求使用。
PS:技术面试时间并不长,我回答了几个之后,他们两个大眼瞪小眼,A看看B问:你还有什么问的吗?B说我没有,你还有吗?A说我也没了。那行,接下来,他们就让我等人事了。
3. python不会的题去哪搜
Github、leetcode、牛客网、实验楼、和鲸社区等网站。
Leetcode是一个专业的刷题网站,题目数量非常之多,你可以用Python等多种语言去解题,也有会相应参考答案,其中不乏大厂面试真题。
牛客网和leetcode类似,也是针对面试笔试场景的刷题网站,里面有腾讯、字节、阿里等各个大厂的面试真题,适合有这方面需求的同学去针对性刷题。
实验楼不同于leetcode和牛客网,它是一个实操代码项目的练习网站,提供了包括Python在内的各种编程语言练习项目,包括像Python入门、Djangoweb编程、Pandas数据分析、自动化运维等,适合对项目练习有需求的同学。
4. python运维开发工程师面试常见问题有哪些
面试python运维开发工程师每家公司对专业知识的考察侧重点是不一样的,下面给你整理了一些,希望能帮助到你!
python
1、python是强类型还是弱类型的语言
2、python的动态性体现在哪
3、python的namespace:四种;len()等函数的命名空间
4、range和xrange的区别,谈到了迭代器
5、于是问怎么实现迭代器,然后又问了生成器,yield语句
6、将list的中的一万条字符串合成一条字符串的方法
7、python多线程(g il)
8、python的三目运算符有吗? 怎么用一行代码实现三目运算
linux
1、问linux命令
2、top和ps在进程占有资源率的统计方式有什么不同
3、然后扯到了页表,内存管理,TLB
5、linux文件系统:inode,inode存储了哪些东西,目录名,文件名存在哪里
5. Python面试数据分析,爬虫和深度学习一般都问什么问题,笔试题目考哪些
一面: 技术面试
面试官是一个比较老练的技术总监,貌似80后:
你先简单做个自我介绍吧。
答:恩,好的,面试官你好,很高兴能来到贵公司面试爬虫工程师一职。我叫XXX,来自于***,毕业于****大学,**学历。(如果专业不是计算机专业,就不要介绍自己的专业,如果是大专以下学历,也不要说自己学历,扬长避短这个道理大家应该都懂得)有2年多爬虫工作经验(如果真实是1年多,就说2年,如果真实是2年多就说3年),工作过2家公司(公司尽量不要说太多,如果2-3年经验说2家就好,以免说的过多让人觉得这人太容易干一段不干,说的太少,可能在一个公司技术积累比较单一),第一家是从实习开始工作的。我就主要介绍下我上家公司的情况吧。我上家公司是****,是一家外包公司(如果是培训班毕业的尽可能说外包,因为在外包公司,任何项目都可能做,方便后面很多问题的解释),我在这家公司做了一年多,这家公司在****。我们这家公司是共有50多人。我在里面负责公司的数据采集爬取,数据处理,绘图分析等(爬虫爬下来的数据很多都会进行一些清洗,可以把自己数据处理,绘图的经验说出来,增加优势,如果没有的话,就业余花时间去学习这方面,常规的方法都不难)。期间主要负责了集团对一些招聘网站、电商网站、金融网站、汽车网站(如果是单一业务的公司,你可能就说不了这么多种类了,一般采集的数据都会比较单一,这就体现了说外包的好处)。我之所以在上家公司离职是因为上家的公司项目基本都已经做完上线了,后面又接的项目感觉挑战性不大,希望寻找一个平台做更多的项目(这个离职原因因人而异,如果换城市的话也可以简单粗暴说我家人、朋友在这边,如果还是同一个城市的话也可以按照我的那样说,也可以其他方式,但是建议不要说公司经营不好之类的,不喜欢这家公司等等,经营不好可能跟公司员工也有关系,如果回答不喜欢上家公司,面试官会接着问,为什么不喜欢,如果我们公司也是这种情况,你会不喜欢吗,面试offer几率就会大大减少)。因为来之前了解过贵公司,现在主要做金融数据采集的任务,后面也会进行一些大数据分析的工作,觉得项目规划很有远见就过来了。(面试前先查下公司底细,知己知彼)因为我在之前公司做过爬虫、分析方面的工作,贵公司的这个项目也刚好是处于初期阶段,我非常喜欢贵公司的这些项目。并且我认为我有能力将贵公司的项目做好,能胜任贵公司爬虫工程师一职,我的情况大概就是这样,您看您们这边还需了解其他什么吗?
2.你主要采集的产业领域有哪些?接触过金融行业吗?
答:我之前主要接触过汽车行业,招聘行业,电商行业,金融行业,金融行业也接触过,但是说实话项目并不是很多,但是技术是相通的,可能刚开始不是很熟悉,只要适应一俩个星期都不是问题。
3.介绍爬虫用到的技术
答:requests、scrapy:爬虫框架和分布式爬虫
xpath:网页数据提取
re:正则匹配
numpy、pandas:处理数据
matplotlib:绘图
mysql:数据存储
redis:爬虫数据去重和url去重
云打:处理常规验证码
复杂验证码:用selenium模拟登陆、处理滑块验证码等(滑块验证码有方法,之前破解过滑块验证码,有空我会出个基本使用教程,进行滑块验证码破解,但不一定通用,因为每个网站反爬措施设置都不一样)
4.处理过的最难的验证码?
答:12306点击图片验证码。原理:图片发送给打码平台,平台返回图片位置数值,通过计算返回数字和图片坐标的关系,进行模拟登陆
5.当开发遇到甩锅问题怎么解决?
答:如果是小问题自己感觉影响不大,背锅就背了,毕竟如果是刚入公司很多不懂,可能会犯一些错误,如果是大问题,就找责任人(虚心点,不卑不亢)
1.你为什么要从上家公司离职?
答:上家公司离职是因为上家的公司项目基本都已经做完上线了,后面又接的项目感觉挑战性不大,希望寻找一个平台做更多的项目
2.来之前了解过我们公司吗?
答:来之前了解过贵公司,现在主要做金融数据采集的任务,后面也会进行一些大数据分析的工作
3.简单介绍一下你最大的缺点跟优点?
答:我的优点是对工作认真负责,团队协作能力好,缺点是言辞表达需要提高,还有对一些细节的把握(我最大的缺点就是对细节过分追求,有多少人想这样说的,能把自己的缺点说成这么好听的优点,也是666了,这样说面试成绩减10分缺点就老老实实说一点模棱两可的缺点就好了,不要过于滑头,也不要太实在)
4.你怎么理解你应聘的职位,针对你应聘的职位你最擅长的是什么?
答:这份职位不仅仅是爬虫方面的技术岗位,更是学习新知识,探索新领域的一条路,希望能有机会给公司贡献一份力量。最擅长数据采集、处理分析
5.你对加班有什么看法?除了工资,你希望在公司得到什么?
答:1,适当的加班可以接受,过度的加班不能,因为要考虑个人,家庭等因素,同时我也会尽量在规定的时间内完成分配给我的任务,当然加班也希望获得相应的加班费。2,希望这份工作能让我发挥我的技能专长,这会给我带来一种满足感,我还希望我所做的工作能够对我目前的技能水平形成一个挑战,从而能促使我提升着急。
6.你的期望薪资是多少?
答:我的期望薪资是13K,因为上家公司已经是10k,而且自己也会的东西比较多,前端、后端、爬虫都会,跳槽希望有一定的增长。
7.你什么时候能到岗上班?
答:因为我已经从上家公司离职,可以随时到岗。(想早上班就别托,先答应越早越好)
8.你还有什么要问我的吗?
答:问了公司的福利待遇,上班时间,培养计划。(上班时间是5天制,没有培养计划,项目初创时期)最后结束面试,说这2天会电话通知,因为后面还好几个竞争对手面试。
结论:面试是个概率事件,同时也跟运气有关,在我的话术之上多进行面试总结,多面一些公司,相信大家都能找到理想工作
6. Python编程面试常见问题有哪些
Python编程面试题目一:python下多线程的限制以及多进程中传递参数的方式,以及区别
(1)python下多线程的限制以及多进程中传递参数的方式
python多线程有个全局解释器锁(global interpreter lock),这个锁的意思是任一时间只能有一个线程使用解释器,跟单cpu跑多个程序一个意思,大家都是轮着用的,这叫“并发”,不是“并行”。
多进程间共享数据,可以使用 multiprocessing.Value 和 multiprocessing.Array
(2)python多线程与多进程的区别
在UNIX平台上,当某个进程终结之后,该进程需要被其父进程调用wait,否则进程成为僵尸进程(Zombie)。所以,有必要对每个Process对象调用join()方法 (实际上等同于wait)。对于多线程来说,由于只有一个进程,所以不存在此必要性。
多进程应该避免共享资源。在多线程中,我们可以比较容易地共享资源,比如使用全局变量或者传递参数。在多进程情况下,由于每个进程有自己独立的内存空间,以上方法并不合适。此时我们可以通过共享内存和Manager的方法来共享资源。但这样做提高了程序的复杂度,并因为同步的需要而降低了程序的效率。
Python编程面试题目二:lambada函数
lambda 函数是一个可以接收任意多个参数(包括可选参数)并且返回单个表达式值的函数。 lambda 函数不能包含命令,它们所包含的表达式不能超过一个。不要试图向lambda 函数中塞入太多的东西;如果你需要更复杂的东西,应该定义一个普通函数,然后想让它多长就多长。
更多关于Python编程的技巧,干货,资讯等内容,小编会持续更新。
7. python面试题总结1-内存管理机制
(1).引用计数
(2). 垃圾回收
(3). 内存池机制
在python中每创建一个对象,对应的会有一个引用计数,当发生赋值操作如a=b,对应的b的引用计数会自动加1,当引用的对象被清除或者函数结束时,引用计数会自动减1。
在python中使用引用计数,标记清楚,分代回收三种方式进行垃圾回收。
其中,引用计数当对象的引用计数归0时,对象会自动被清除。标记清除机制是首先遍历所有对象,如果对象可达,就说明有变量引用它,则标记其为可达的。如果不可达,则对其进行清除。分代回收是当对象创建时被标记为第0代,经过一次垃圾回收之后,余下的对象被标记为第1代,最高为第2代。其原理是,对象的生存期越长,月可能不是垃越。
ython语言虽然提供了对内存的垃圾收集机制,但实际上它将不用的内存放到内存池而不是返回给操作系统,所以就有了以下:
1 Pymalloc机制;这个主要是为了加速Python的执行效率,Python引入了一个内存池机制,用于管理,为了对小块内存的申请和释放。
2 Python中所有小于256个字节的对象都是依靠pymalloc分配器来实现的,而稍大的对象用的则是系统的malloc。
3 对于Python对象,比如整数、浮点数和List这些,都有自己独立的内存池,对象间并不共享他们的内存池。换句话说就是,假设你分配并且释放了大量的整数,那么用于缓存这些整数的内存就不能再分配给浮点数。
8. Python面试基础题十大陷阱,你中招了吗
我们在会碰到各种各样的面试,有的甚至是HR专门为你设置的障碍,在python面试中也是,无论你是应聘Python web开发,爬虫工程师,或是数据分析,还是自动化运维,这些python面试基础题十大陷阱也许你会遇到,今天的python培训总结出来给你以防万一:
问题1:请问如何修改以下Python代码,使得下面的代码调用类A的show方法?
class A(object)
def show(self):
print 'derived show'
class B(A)
def show(self):
print 'derived show'
obj=B()
obj.show()
答:这道题的考点是类继承,只要通过__class__ 方法指定类对象就可以了。补充的代码如下:
obj._class_=A
obj.show()
问题2:请问如何修改以下Python代码,使得代码能够运行?
class A(object):
def _init_ (self,a,b):
self._a = a
self._b = b
def myprint(self):
print 'a=',self._a,'b=',self._b
a1=A(10,20)
a1.myprint()
a1=(80)
答:此题考察得是方法对象,为了能让对象实例能被直接调用,需要实现 __call__ 方法,补充代码如下:
class A(object):
def _init_ (self,a,b):
self._a = a
self._b = b
def myprint(self):
print 'a=',self._a,'b=',self._b
def_call_(self,num):
print'call:',num+self._a
问题3:下面这段代码的输出是什么?
class B(object):
def fn(self):
print"B fn"
def_init_(self):
print"B INIT"
class A(object):
def fn(self):
print"A fn"
def_new_(cls,a):
print"NEW",a
if a>10:
return super(A,cls)._new_(cls)
return B()
def_init_(self,a):
print "INIT",a
a1=A(5)
a1,fn()
a2=A(20)
a2,fn()
答:
NEW 5
B INIT
B fn
NEW 20
INIT 20
A fn
此题考察的是new和init的用法,使用 __new__ 方法,可以决定返回那个对象,也就是创建对象之前调用的,这个常见于于设计模式的单例、工厂模式。__init__ 是创建对象是调用的。
问题4:下面这段代码输出什么?
1s=[1,2,3,4]
list1 =[i for i in ls if i>2
print list1
list2 =[1*2 for i in ls if 1>2
print list2
dicl={x: x**2 for x in(2, 4, 6)}
print dic1
dic2={x: ' item'+ str(x**2)for x in (2, 4, 6)}
print dic2
setl ={x for x in 'hello world' if x not in 'low level'}
print set1
答:
[3,4]
[6,8]
{2:4,4:16,6:36}
{2:'item4',4:'item16’,6:'item36"}set(["h",'r','d"])
此题考察的是列表和字典的生成。
问题5:下面这段代码输出什么?
num= 9
def f1():
um=20
def f2():
print num
f2()
f1()
f2()
答:
9
9
此题考察全局变量和局部变量。num 不是个全局变量,所以每个函数都得到了自己的 num 拷贝,如果你想修改 num ,则必须用 global 关键字声明。比如下面这样
num=9
def f1():
global num
um=20
def f2():
print num
f2()
f1()
f2()
#prints:
#9
#20
问题6:如何使用一行代码交换两个变量值?
a=8
b=9
答:
(a,b)=(b,a)
问题7:如何添加代码,使得没有定义的方法都调用mydefault方法?
class A(object):
def_init_(self,a,b):
self.a1=a
self.b1=b
print'init'
def mydefault(self):
print'default'
a1=A(10,20)
a1.fn1()
a1.fn2()
a1.fn3()
答:
class A(object):
def_init_(self,a,b):
self.a1=a
self.b1=b
print'init'
def mydefault(self):
print'default'
def_getattr_(self,name):
return self.mydefault
a1=A(10,20)
a1.fn1()
a1.fn2()
a1.fn3()
此题的考的是Python的默认方法, 只有当没有定义的方法调用时,才会调用方法 __getattr__。当 fn1 方法传入参数时,我们可以给 mydefault 方法增加一个 *args 不定参数来兼容。
class A(object):
def_init_(self,a,b):
self.a1=a
self.b1=b
print'init'
def mydefault(self,*args):
print'default:'+str(args[0])
def_getattr_(self,name):
print"other fn:",name
return self.mydefault
a1=A(10,20)
a1.fn1(33)
a1.fn2('hello')
a1.fn3(10)
问题8:一个包里有三个模块,mod1.py , mod2.py , mod3.py ,但使用 from demopack import * 导入模块时,如何保证只有 mod1 、 mod3 被导入了。
答:在包中增加 __init__.py 文件,并在文件中增加:
_all_=['mod1','mod3']
问题9:写一个函数,接收整数参数 n ,返回一个函数,函数返回n和参数的积。
答:
def mulby(num):
def gn(val):
return num*val
return gn
zw=mulby(7)
print(zw(9));
问题10:请问下面的代码有什么隐患?(Python2中)
def strtest1(num):
str='first'
for i in range(num):
str+="X"
return str
答:由于变量str是个不可变对象,每次迭代,python都会生成新的str对象来存储新的字符串,num越大,创建的str对象越多,内存消耗越大。
9. Python后端开发工程师面试
第一步:自我介绍
第二步:公司介绍
第三步:技术基础
第四步:项目介绍
第五步:待遇
自我介绍,简单直接,姓名,籍贯,大学,工作经历
示例如下:
你好,面试官,我叫XX,来自XX,本科毕业于XX,主修XX专业,有X年工作经验,在上一家公司担任python后端开发工程师的职位。
公司名称是XX、公司主要做外包软件、都有软件定制/商城定制、前端2个后端2个运维1个
主要是根据你简历中填写的技术,根据我的简历中所写的,总结几点如下:
字典的查询流程:
不可变对象可哈希, str , fronzenset , tuple ,自己实现的类,要重载 __hash__ 方法。
dict内存花销大,但是查询速度快,自定义的对象或者python内部的对象都是dict包装的。
dict的存储顺序和元素添加顺序有关,添加顺序可能改变已有数据的顺序。
集合:是一个可以存放任意数据类型的可变无序的映射集合。
set和dict类似,set的核心也是散列表,但是表元只包含值的引用。 由于散列表的特性,set的元素不能重复,且无序。 内部由哈希实现,查找的时间复杂度为O(1),所以性能很高,实现了魔法函数 __contains__ 可以使用in来查找。 set的去重是通过两个函数 __hash__ 和 __eq__ 实现的。
(1)浅拷贝
定义:浅拷贝只是对另外一个变量的内存地址的拷贝,这两个变量指向同一个内存地址的变量值。
浅拷贝的特点:
(2)深拷贝:
定义:一个变量对另外一个变量的值拷贝。
深拷贝的特点:
Python GC主要使用引用计数(reference counting)来跟踪和回收垃圾。在引用计数的基础上,通过“标记-清除”(mark and sweep)解决容器对象可能产生的循环引用问题,通过“分代回收”(generation collectio n)以空间换时间的方法提高垃圾回收效率。
GIL全称 Global Interpreter Lock ,中文解释为全局解释器锁。它并不是Python的特性,而是在实现python的主流Cpython解释器时所引入的一个概念,GIL本质上就是一把互斥锁,将并发运行变成串行,以此来控制同一时间内共享数据只能被一个任务所修改,从而保证数据的安全性。
GIL保护的是解释器级别的数据,但是用户自己的数据需要自己加锁处理。
既然有了GIL的存在,一个进程中同一时刻只有一个线程能够被执行,无法利用cpu的多核机制,导致多线程用于I/O密集型,多进程用于计算密集型,如金融分析等。
死锁:两个或两个以上的进程或者线程在执行过程中,因为争夺资源而造成的互相等待现象,若无外力的作用,都将一直处于阻塞状态,这些互相等待的进程或者线程就被称为死锁。
解决方法,使用递归锁(RLock)
这个RLock内部有一个Lock和一个counter变量,counter记录着acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁
可以直接认为是linux,毕竟搞后端的多数是和linux打交道。
那么如何避免粘包问题呢? 归根结底就是一句话, 明确两个包之间的边界.
UDP不存在粘包问题,是由于UDP发送的时候,没有经过Negal算法优化,不会将多个小包合并一次发送出去。另外,在UDP协议的接收端,采用了链式结构来记录每一个到达的UDP包,这样接收端应用程序一次recv只能从socket接收缓冲区中读出一个数据包。也就是说,发送端send了几次,接收端必须recv几次(无论recv时指定了多大的缓冲区)。
存储可能包含rdbms,nosql以及缓存等,我以mysql,redis举例**
10. BAT面试题28:Python是如何进行内存管理的
Python的内存管理,一般从以下三个方面来说:
1)对象的引用计数机制(四增五减)
2)垃圾回收机制(手动自动,分代回收)
3)内存池机制(大m小p)
1)对象的引用计数机制
要保持追踪内存中的对象,Python使用了引用计数这一简单的技术。sys.getrefcount(a)可以查看a对象的引用计数,但是比正常计数大1,因为调用函数的时候传入a,这会让a的引用计数+1
2)垃圾回收机制
吃太多,总会变胖,Python也是这样。当Python中的对象越来越多,它们将占据越来越大的内存。不过你不用太担心Python的体形,它会在适当的时候“减肥”,启动垃圾回收(garbage
collection),将没用的对象清除
从基本原理上,当Python的某个对象的引用计数降为0时,说明没有任何引用指向该对象,该对象就成为要被回收的垃圾了
比如某个新建对象,它被分配给某个引用,对象的引用计数变为1。如果引用被删除,对象的引用计数为0,那么该对象就可以被垃圾回收。
然而,减肥是个昂贵而费力的事情。垃圾回收时,Python不能进行其它的任务。频繁的垃圾回收将大大降低Python的工作效率。如果内存中的对象不多,就没有必要总启动垃圾回收。
所以,Python只会在特定条件下,自动启动垃圾回收。当Python运行时,会记录其中分配对象(object
allocation)和取消分配对象(object deallocation)的次数。当两者的差值高于某个阈值时,垃圾回收才会启动。
我们可以通过gc模块的get_threshold()方法,查看该阈值。
3)内存池机制
Python中有分为大内存和小内存:(256K为界限分大小内存)
1、大内存使用malloc进行分配
2、小内存使用内存池进行分配
python中的内存管理机制都有两套实现,一套是针对小对象,就是大小小于256K时,pymalloc会在内存池中申请内存空间;当大于256K时,则会直接执行系统的malloc的行为来申请内存空间。