⑴ 求云模型评价云图的python代码,做出的图就像下面图一样的
你把单做一个的代码贴出来,我可以帮你合到一个图上。
先看结果:
Ex=[0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1]
fig = plt.figure()
for i in Ex:
res=forwardCloud(i,0.04,0.005,1000)
x=[x[0] for x in res]
y=[x[1] for x in res]
plt.scatter(x,y,color='red',s=3)
plt.show()
希望可以帮到你
⑵ 如何从点云创建深度图像
首先,在PCL(Point Cloud Learning)中国协助发行的书提供光盘的第9章例1文件夹中,打开名为range_image_creation.cpp的代码文件。
解释说明
下面来解析打开源代码中的关键语句。
#include <pcl/range_image/range_image.h> //深度图像头文件
int main (int argc, char** argv) {
pcl::PointCloud<pcl::PointXYZ> pointCloud; //定义点云对象
for (float y=-0.5f; y<=0.5f; y+=0.01f) { //循环产生点数据
for (float z=-0.5f; z<=0.5f; z+=0.01f) {
pcl::PointXYZ point;
point.x = 2.0f - y;
point.y = y;
point.z = z;
pointCloud.points.push_back(point); //循环添加点数据到点云对象
}
}
pointCloud.width = (uint32_t) pointCloud.points.size();
pointCloud.height = 1; //设置点云对象的头信息
这段程序首先创建一组数据作为点云的数据内容,再设置文件头的信息,整个实现生成一个呈矩形形状的点云。
float angularResolution = (float) ( 1.0f * (M_PI/180.0f)); // 按弧度1度
float maxAngleWidth = (float) (360.0f * (M_PI/180.0f)); // 按弧度360.0度
float maxAngleHeight = (float) (180.0f * (M_PI/180.0f)); // 按弧度180.0度
Eigen::Affine3f sensorPose = (Eigen::Affine3f)Eigen::Translation3f(0.0f, 0.0f,0.0f); //采集位置
pcl::RangeImage::CoordinateFrame coordinate_frame =pcl::RangeImage::CAMERA_FRAME; //深度图像遵循的坐标系统
float noiseLevel=0.00;
float minRange = 0.0f;
int borderSize = 1;
这部分定义了创建深度图像时需要的设置参数,将角度分辨率定义为1度,意味着由邻近的像素点所对应的每个光束之间相差1度,maxAngleWidth=360和maxAngleHeight=180意味着,我们进行模拟的距离传感器对周围的环境拥有一个完整的360度视角,用户在任何数据集下都可以使用此设置,因为最终获取的深度图像将被裁剪到有空间物体存在的区域范围。但是,用户可以通过减小数值来节省一些计算资源,例如:对于传感器后面没有可以观测的点时,一个水平视角为180度的激光扫描仪,即maxAngleWidth=180就足够了,这样只需要观察距离传感器前面就可以了,因为后面没有需要观察的场景。sensorPose定义了模拟深度图像获取传感器的6自由度位置,其原始值为横滚角roll、俯仰角pitch、偏航角yaw都为0,coordinate_frame=CAMERA_FRAME说明系统的X轴是向右的,Y轴是向下的,Z轴是向前的,另外一个选择是LASER_FRAME,其X轴向前,Y轴向左,Z轴向上。noiseLevel=0是指使用一个归一化的Z缓冲器来创建深度图像,但是如果想让邻近点集都落在同一个像素单元,用户可以设置一个较高的值,例如noiseLevel=0.05可以理解为,深度距离值是通过查询点半径为125px的圆内包含的点用来平均计算而得到的。如果minRange>0,则所有模拟器所在位置半径minRange内的邻近点都将被忽略,即为盲区。在裁剪图像时,如果borderSize>0,将在图像周围留下当前视点不可见点的边界。
pcl::RangeImage rangeImage;
rangeImage.createFromPointCloud(pointCloud, angularResolution, maxAngleWidth, maxAngleHeight, sensorPose, coordinate_frame, noiseLevel, minRange, borderSize);
std::cout << rangeImage << "\n";
其余的代码是使用那些用户给定的参数,从点云创建深度图像,并且在终端下打印出一些信息。
深度图像继承于PointCloud类,它的点类型具有x,y,z和range距离字段,共有三种类型的点集,有效点集是距离大于零的点集,当前视点不可见点集x=y=z=NAN且值域为负无穷大,远距离点集x=y=z=NAN且值域为无穷大。
编译和运行程序
利用光盘提供的CMakeLists.txt文件,在cmake中建立工程文件,并生成相应的可执行文件。生成执行文件后,就可以运行了,在cmd中键入命令:
...>range_image_creation.exe
⑶ Kinect 深度图像 转 三维坐标
Khoshelham K, Elberink S O. Accuracy and resolution of kinect depth data for indoor mapping applications[J]. Sensors, 2012, 12(2): 1437-1454.
这篇期刊讲到原理,但是不知道具体函数到底是什么。
原理是根据一个参考平面,和图像上点的坐标来计算的
⑷ python 如何将三维数组转化为点云三维数组中只有0或者1
使用reshape命令对矩阵进行整形。使用方式reshape(X,m,n...)
改进方式:
a(:,:,1)=[1
2
3;4
5
6;7
8
9];
a(:,:,2)=[0
0
1;0
1
0;1
0
0];
a(:,:,3)=3
for
j=1:3
k=a(j,:,:);
k=reshape(k,3,3);%更改位置,3,3按照自己的矩阵变化,但要保证数目相同
[x,y]=eig(k);%x:特征向量;y:特征值。后期自己再改正哈程序
end
⑸ 怎样用python实现深度学习
基于Python的深度学习库、深度学习方向、机器学习方向、自然语言处理方向的一些网站基本都是通过Python来实现的。
机器学习,尤其是现在火爆的深度学习,其工具框架大都提供了Python接口。Python在科学计算领域一直有着较好的声誉,其简洁清晰的语法以及丰富的计算工具,深受此领域开发者喜爱。
早在深度学习以及Tensorflow等框架流行之前,Python中即有scikit-learn,能够很方便地完成几乎所有机器学习模型,从经典数据集下载到构建模型只需要简单的几行代码。配合Pandas、matplotlib等工具,能很简单地进行调整。
而Tensorflow、PyTorch、MXNet、Keras等深度学习框架更是极大地拓展了机器学习的可能。使用Keras编写一个手写数字识别的深度学习网络仅仅需要寥寥数十行代码,即可借助底层实现,方便地调用包括GPU在内的大量资源完成工作。
值得一提的是,无论什么框架,Python只是作为前端描述用的语言,实际计算则是通过底层的C/C++实现。由于Python能很方便地引入和使用C/C++项目和库,从而实现功能和性能上的扩展,这样的大规模计算中,让开发者更关注逻辑于数据本身,而从内存分配等繁杂工作中解放出来,是Python被广泛应用到机器学习领域的重要原因。
⑹ 你好,问一下,现在你知道如何保存kinect的深度图像-并用pcl转化为点云pcd格式了吗
PCL的话很简单啊,里面直接由函数可以存PCD文件的,pcl::PCDWriter的write函数