㈠ 用python画折线图怎么实现拉伸效果
#encoding=utf-8importmatplotlib.pyplotaspltfrompylabimport*#支持中文mpl.rcParams['font.sans-serif']=['SimHei']names=['5','10','15','20','25']x=range(len(names))y=[0.855,0.84,0.835,0.815,0.81]y1=[0.86,0.85,0.853,0.849,0.83]#plt.plot(x,y,'ro-')#plt.plot(x,y1,'bo-')#pl.xlim(-1,11)#限定横轴的范围#pl.ylim(-1,110)#限定纵轴的范围plt.plot(x,y,marker='o',mec='r',mfc='w',label=u'y=x^2曲线图')plt.plot(x,y1,marker='*',ms=10,label=u'y=x^3曲线图')plt.legend()#让图例生效plt.xticks(x,names,rotation=45)plt.margins(0)plt.subplots_adjust(bottom=0.15)plt.xlabel(u"time(s)邻居")#X轴标签plt.ylabel("RMSE")#Y轴标签plt.title("Asimpleplot")#标题plt.show()㈡ python怎么画折线图
一、环境准备
linux ubuntu 下需安装下面三个包:
Numpy, Scipy,Matplotlib
分别输入下面的代码进行安装:
[plain]view plain
pipinstallnumpy
pipinstallscipy
sudoapt-getinstallpython-matplotlib
测试是否安装成功
[html]view plain
python
>>>importpylab
如果没有报错则安装成功
二、开始画图
1. 画最简单的直线图
代码如下:
[python]view plain
importnumpyasnp
importmatplotlib.pyplotasplt
x=[0,1]
y=[0,1]
plt.figure()
plt.plot(x,y)
plt.savefig("easyplot.jpg")
结果如下:
㈢ 如何使用Python的Pandas库绘制折线图
我们经常会使用Python的Pandas绘制各种数据图形,那么如何使用它绘制折线图呢?下面我给大家分享一下。
Pycharm
首先我们需要打开Excel软件准备需要的数据,这里多准备几列数据,一列就是一条折线,如下图所示
然后我们打开Pycharm软件,新建Python文件,导入Pandas库,接着将Excel中的数据读取进数据集缓存,如下图所示
接下来我们利用plot方法绘制折线图,如下图所示,这里只添加了一列标题
运行文件以后我们就可以看到折线图显示出来了,但是比较的简单,下面我们逐渐的丰富它
然后在plot方法中将excel里面的多列标题都添加进来,如下图所示
这次在运行文件的时候我们就可以看到折线图上有多条线了,如下图所示
接下来我们在为折线图设置标题,X,Y坐标轴的内容,如下图所示
然后通过plot方法下面的area方法对折线图的空白区域进行叠加填充,如下图所示
最后我们运行完善好后的文件,就可以看到如下图所示的折线图了,到此我们的折线图绘制也就完成了
㈣ python绘折线图(数据很多)很难看
数据使用前要清洗,去除无效数据。
如果这些数据都是有效数据,只是你不想显示那些过份异常的数据,那么,就进行去噪处理。
去噪分两步:检测噪点,噪点修正。
对于整体连续,总体范围大的数据集,最简单的检测噪点的办法就是邻值法,对于第n取相邻的k个值:p[n-k,],p[n-k+1]...p[n-1]
对它们加权平均,得到标准点,上下浮动一定范围,如果p[k]不在这个范围内就是异常点
对应的噪点修正可以使用类似的过程,局部噪点回归法。
这些一般来说都不是很实现的东西,对于数据集结构的不同,没有必要做成通用的包,所以你只有自己实现。
㈤ python画折线图,麻烦帮忙看看
提示是说2017-01-01不能转化为float数据,因为没有你的数据,提供一个简单的例子(两条折线)
import matplotlib.pyplot as plt
x = [1,2,3]
y = [5,7,4]
x2 = [1,2,3]
y2 = [10,14,12]
plt.plot(x, y, label='First Line')
plt.plot(x2, y2, label='Second Line')
plt.xlabel('Plot Number')
plt.ylabel('Important var')
plt.title('Interesting Graph\nCheck it out')
plt.legend()
plt.savefig("test.png")