‘壹’ 如何用python调用百度语音识别
#!/usr/bin/env python
# -*- coding: utf-8 -*-
########################################################################
#
# Copyright (c) 2017 aibot.me, Inc. All Rights Reserved
#
########################################################################
"""
File: util_voice.py
Author: darrenwang([email protected])
Date: 2017/03/24 11:29:50
Brief:
"""
import sys
import json
import time
import base64
import urllib
import urllib2
import requests
class BaiRest:
def __init__(self, cu_id, api_key, api_secert):
self.token_url = "https://openapi..com/oauth/2.0/token?grant_type=client_credentials&client_id=%s&client_secret=%s"
self.getvoice_url = "http://tsn..com/text2audio?tex=%s&lan=zh&cuid=%s&ctp=1&tok=%s"
self.upvoice_url = 'http://vop..com/server_api'
self.cu_id = cu_id
self.get_token(api_key, api_secert)
return
def get_token(self, api_key, api_secert):
token_url = self.token_url % (api_key,api_secert)
r_str = urllib2.urlopen(token_url).read()
token_data = json.loads(r_str)
self.token_str = token_data['access_token']
return True
#语音合成
def text2audio(self, text, filename):
get_url = self.getvoice_url % (urllib2.quote(text), self.cu_id, self.token_str)
voice_data = urllib2.urlopen(get_url).read()
voice_fp = open(filename,'wb+')
voice_fp.write(voice_data)
voice_fp.close()
return True
##语音识别
def audio2text(self, filename):
data = {}
data['format'] = 'wav'
data['rate'] = 8000
data['channel'] = 1
data['cuid'] = self.cu_id
data['token'] = self.token_str
wav_fp = open(filename,'rb')
voice_data = wav_fp.read()
data['len'] = len(voice_data)
#data['speech'] = base64.b64encode(voice_data).decode('utf-8')
data['speech'] = base64.b64encode(voice_data).replace('\n', '')
#post_data = json.mps(data)
result = requests.post(self.upvoice_url, json=data, headers={'Content-Type': 'application/json'})
data_result = result.json()
print data_result
return data_result['result'][0]
def test_voice():
api_key = "SrhYKqzl3SE1URnAEuZ0FKdT"
api_secert = ""
bdr = BaiRest("test_python", api_key, api_secert)
#生成
start = time.time()
bdr.text2audio("你好啊", "out.wav")
using = time.time() - start
print using
#识别
start = time.time()
#result = bdr.audio2text("test.wav")
#result = bdr.audio2text("weather.pcm")
using = time.time() - start
print using, result
return True
if __name__ == "__main__":
test_voice()
‘贰’ 请问谁有靠谱的Python全套视频教程,求推荐分享
给题主整理的这套python学习路线图,按照此教程一步步的学习来,肯定会对python有更深刻的认识。或许可以喜欢上python这个易学,精简,开源的语言。此套教程,不但有视频教程,还有源码分享,让大家能真正打开python的大门,进入这个领域。现在互联网巨头,都已经转投到人工智能领域,而人工智能最好的编程语言就是python,未来前景显而易见。
‘叁’ python里的爬虫如何使用xpath 提取script里的元素
xpath也许只能提取html元素?
建议你先把content保存到本地文件,看看需要的内容有没有下载下来。
你这个属于script内容,看看直接正则能获得吗?
‘肆’ python如何扒取数据
网络爬虫(英语:web crawler),也叫网上蜘蛛(spider),是一种用来自动浏览万维网的网络机器人。其目的一般为编纂网络索引。
这里提到的编纂网络索引,就是搜索引擎干的事情。我们对搜索引擎并不陌生,Google、网络等搜索引擎可能每天都在帮我们快速获得
信息。搜索引擎的工作过程是怎样的呢?
首先,就是有网络爬虫不断抓取各个网站的网页,存放到搜索引擎的数据库;
接着,索引程序读取数据库的网页进行清理,建立倒排索引;
最后,搜索程序接收用户的查询关键词,去索引里面找到相关内容,并通过一定的排序算法(Pagerank等)把最相关最好的结果排在最前面呈现给用户。
看上去简简单单的三个部分,却构成了强大复杂的搜索引擎系统。而网络爬虫是其中最基础也很重要的一部分,它决定着搜索引擎数据的完整性和丰富性。我们也看到网络爬虫的主要作用是获取数据。
由此简单地说,网络爬虫就是获取互联网公开数据的自动化工具。
这里要强调一下,网络爬虫爬取的是互联网上的公开数据,而不是通过特殊技术非法入侵到网站服务器获取的非公开数据。
推荐学习《python教程》。
‘伍’ python语音识别如何部署到移动应用
python语音识别源于 20 世纪 50 年代早期在贝尔实验室所做的研究。早期语音识别系统仅能识别单个讲话者以及只有约十几个单词的词汇量。现代语音识别系统已经取得了很大进步,可以识别多个讲话者,并且拥有识别多种语言的庞大词汇表。
语音识别的首要部分当然是语音。通过麦克风,语音便从物理声音被转换为电信号,然后通过模数转换器转换为数据。一旦被数字化,就可适用若干种模型,将音频转录为文本。
大多数现代语音识别系统都依赖于隐马尔可夫模型(HMM)。其工作原理为:语音信号在非常短的时间尺度上(比如 10 毫秒)可被近似为静止过程,即一个其统计特性不随时间变化的过程。
‘陆’ 自己动手写Python进行文本转语音程序,共计11行代码
1、首先安装Python程序推荐3.7
2、下载 pyttsx3库。
3、将需要转换的文本和程序放到一起。
4、运行程序就会朗读文本和保存文本朗读的语音文件。
以下是源代码:
import pyttsx3
with open ( 'word.txt' , encoding = 'utf-8' ) as obj:
line=obj.readline()
engine=pyttsx3.init()
rate=engine.getProperty( 'rate' )
engine.setProperty( 'rate' , 160 )
volume=engine.getProperty( 'volume' )
engine.setProperty( 'volume' , 0.6 )
engine.say(line)
engine.save_to_file(line, 'abc.mp3' )
engine.runAndWait()
‘柒’ python中音频图像识别和网页相关的库合集!
1、OpenCV
OpenCV是最常用的图像和视频识别库。毫不夸张地说,OpenCV能让Python在图像和视频识别领域完全替代Matlab。
OpenCV提供各种应用程序接口,同时它不仅支持Python,还支持Java和Matlab。OpenCV出色的处理能力使其在计算机产业和学术研究中都广受好评。
2、Librosa
Librosa是一个非常强大的音频和声音处理Python库。Librosa可以用来从音频段中提取各个部分,例如韵律,节奏以及节拍。
像Laplacia分割这样极度复杂的算法,在使用了Librosa之后只需几行代码就能轻而易举的运用。
Python在被广泛运用于数据科学领域前,曾经可是网页开发领域的宠儿。因此也有很多用于网页开发的库。
3、Django
要想使用Python来开发一个网页服务后端,Django一直都是不二之选。Django的设计理念便是,能用几行代码就建立一个网站的高级框架。
Django直接与大多数知名数据库相连,这样使用者就可以省下建立连接和数据模型开发的时间。Django的使用者只需专注于业务逻辑而不需担心受创建、更新、读取和删除(Create,update,retrieve and delete, CURD)的操控,因为Django是一个由数据库驱动的框架。
4、Flask
Flask是一个用于Python的轻量级网页开发框架。其最宝贵的特点是能够轻而易举地进行能够满足任何需求的定制化处理。
有很多提供网站UI的知名Python库和Python工具都是使用Flask构建的,例如Plotly Dash和Airflow。这些网站之所以使用Flask,正是由于其轻量级的特点。
诚然,还有许多优秀的Python库应当被提及,但上述这些库就足够你研究好一阵子了。人生苦短,及时Python!
更多python知识,请关注python视频教程!!
‘捌’ 如何用python调用百度语音识别
1、首先需要打开网络AI语音系统,开始编写代码,如图所示,编写好回车。
‘玖’ 有没有比较好的Python爬虫视频教程
Python是现在比较流行的编程语言,未来发展前景广阔,就业方向多,薪资待遇也是非常非常可观的,因此不少人想要学习Python;而爬虫是Python的应用领域之一,现在各大网站都有Python的教学视频,比如说老男孩教育网站上有很多Python的学习教程,从入门到精通,还有项目实战教学视频可以观看,知识点非常全面,可以去看看。
‘拾’ python视频分离音频,同时简单分轨
首先,安装相应的音视频处理库:
然后,导入库,并读取相应的视频文件,将音频导出:(路径修改为自己的路径)
主要思路:用字符串保存时:分:秒,然后对应不同的音轨(下面以列表的方式)进行裁剪,注意:AudioSegment的单位是毫秒,所以在取切片时乘以1000。
这样就完成了。