A. 请问矩阵的运算法则
矩阵的运算 1、矩阵的加法 : 如果 是两个同型矩阵(即它们具有相同的行数和列数,比如说 ),则定义它们的和 仍为与它们同型的矩阵(即 ), 的元素为 和 对应元素的和,即: 。 给定矩阵 ,我们定义其负矩阵 为: 。这样我们可以定义同型矩阵 的减法为: 。由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列 运算律: ( 1)交换律: ; ( 2)结合律: ; ( 3)存在零元: ; ( 4)存在负元: 。 2 、数与矩阵的乘法 : 设 为一个数, ,则定义 与 的乘积 仍为 中的一个矩阵, 中的元素就是用数 乘 中对应的元素的道德,即 。由定义可知: 。容易验证数与矩阵的乘法满足下列运算律: (1 ) ; (2 ) ; (3 ) ; (4 ) 。 3 、矩阵的乘法:设 为 距阵, 为 距阵,则矩阵 可以左乘矩阵 (注意:距阵 德列数等与矩阵 的行数),所得的积为一个 距阵 ,即 ,其中 ,并且 。 据真的乘法满足下列 运算律(假定下面的运算均有意义): ( 1)结合律: ; ( 2)左分配律: ; ( 3)右分配律: ; ( 4)数与矩阵乘法的结合律: ; ( 5)单位元的存在性: 。 若 为 阶方阵,则对任意正整数 ,我们定义: ,并规定: 由于矩阵乘法满足结合律,我们有: , 。
B. 求python高手详细解答。代码实现的是矩阵的乘法运算。高分追加。
for _ in range()# 你把下划线换成 i 或者 j 比较符合习惯。。下划线开头的是一个变量。
C. Python实现矩阵加法和乘法的方法分析
Python实现矩阵加法和乘法的方法分析
本文实例讲述了Python实现矩阵加法和乘法的方法。分享给大家供大家参考,具体如下:
本来以为python的矩阵用list表示出来应该很简单可以搞。。其实发现有大学问。
这里贴出我写的特别不pythonic的矩阵加法,作为反例。
def add(a, b):
rows = len(a[0])
cols = len(a)
c = []
for i in range(rows):
temp = []
for j in range(cols):
temp.append(a[i][j] + b[i][j])
c.append(temp)
return c
然后搜索了一下资料,果断有个很棒的,不过不知道有没有更棒的。
矩阵加法
def madd(M1, M2):
if isinstance(M1, (tuple, list)) and isinstance(M2, (tuple, list)):
return [[m+n for m,n in zip(i,j)] for i, j in zip(M1,M2)]
矩阵乘法
def multi(M1, M2):
if isinstance(M1, (float, int)) and isinstance(M2, (tuple, list)):
return [[M1*i for i in j] for j in M2]
if isinstance(M1, (tuple, list)) and isinstance(M2, (tuple, list)):
return [[sum(map(lambda x: x[0]*x[1], zip(i,j)))
for j in zip(*M2)] for i in M1]
D. 问一下,python里用for循环去写两个矩阵的加法和乘法怎么写(不用np的那种方法)
您好,您提问的问题有些模糊,如果问的是一维数组所有元素的成绩是这样的:
a=[1,2,3,4,5,6]#Python中数组存放在list中
result=1#result存放结果
foriina:
result=i*result#a中每个元素都乘进result中
printresult
如果不是这个问题,请你将问题描述完善一些。
E. 矩阵加法怎么算 请问矩阵加减乘除如何计算
1、加法运算:两个矩阵的加是矩阵中对应的元素相加,相加的前提是:两个矩阵要是通行矩阵,即具有相同的行和列数。如:矩阵A=[1 2],B=[2 3] ,A+B=[1+2 2+3]=[3 5]。
2、减法运算:两个矩阵相减,跟加法类似。
3、乘法运算:两个矩阵要可以相乘,必须是A矩阵的列数B矩阵的行数相等,才可以进行乘法,矩阵乘法的原则是,A矩阵的第i行中的元素分别与B矩阵中的第j列中的元素相乘再求和,得到的结果就是新矩阵的第i行第j列的值。
4、除法运算:一般不说矩阵的除法。都是讲的矩阵求逆。
F. python矩阵乘法是什么
python实现矩阵乘法的方法
def matrixMul(A, B):
res = [[0] * len(B[0]) for i in range(len(A))]
for i in range(len(A)):
for j in range(len(B[0])):
for k in range(len(B)):
res[i][j] += A[i][k] * B[k][j]
return res
def matrixMul2(A, B):
return [[sum(a * b for a, b in zip(a, b)) for b in zip(*B)] for a in A]
a = [[1,2], [3,4], [5,6], [7,8]]
b = [[1,2,3,4], [5,6,7,8]]
print matrixMul(a,b)
print matrixMul(b,a)
乘积形式
除了上述的矩阵乘法以外,还有其他一些特殊的“乘积”形式被定义在矩阵上,值得注意的是,当提及“矩阵相乘”或者“矩阵乘法”的时候,并不是指代这些特殊的乘积形式,而是定义中所描述的矩阵乘法。在描述这些特殊乘积时,使用这些运算的专用名称和符号来避免表述歧义。
G. python 怎么实现矩阵运算
1.numpy的导入和使用
data1=mat(zeros((
)))
#创建一个3*3的零矩阵,矩阵这里zeros函数的参数是一个tuple类型(3,3)
data2=mat(ones((
)))
#创建一个2*4的1矩阵,默认是浮点型的数据,如果需要时int类型,可以使用dtype=int
data3=mat(random.rand(
))
#这里的random模块使用的是numpy中的random模块,random.rand(2,2)创建的是一个二维数组,需要将其转换成#matrix
data4=mat(random.randint(
10
,size=(
)))
#生成一个3*3的0-10之间的随机整数矩阵,如果需要指定下界则可以多加一个参数
data5=mat(random.randint(
,size=(
))
#产生一个2-8之间的随机整数矩阵
data6=mat(eye(
,dtype=
int
))
#产生一个2*2的对角矩阵
a1=[
]; a2=mat(diag(a1))
#生成一个对角线为1、2、3的对角矩阵
H. 矩阵计算方法法则
矩阵计算方法法则:
1.矩阵加法运算
矩阵之间也可以相加。把两个矩阵对应位置的单个元素相加,得到的新矩阵就是矩阵加法的结果。由其运算法则可知,只有行数和列数完全相同的矩阵才能进行加法运算。
矩阵之间相加没有顺序,假设A、B都是矩阵,则A+B=B+A。通常认为矩阵没有减法,若要与一个矩阵相减,在概念上是引入一个该矩阵的负矩阵,然后相加。A-B是A+(-B)的简写。图演示了两个三行三列矩阵的加法。
2.矩阵乘法运算
矩阵之间也可以进行乘法运算,但其运算过程相对复杂得多。与算术乘法不同,矩阵乘法并不是多个矩阵之和,它有自己的逻辑。其算法的具体描述为:假设m行n列的矩阵A和r行v列的矩阵B相乘得到矩阵C,则首先矩阵A和矩阵B必须满足n=r。
也就是说,第一个矩阵的列数必须和第二个矩阵的行数相同。在运算时,第一个矩阵A的第i行的所有元素同第二个矩阵B第j列的元素对应相乘,并把相乘的结果相加,最终得到的值就是矩阵C的第i行第j列的值。
矩阵的值的计算公式
A=(aij)m×n。按照初等行变换原则把原来的矩阵变换为阶梯型矩阵,总行数减去全部为零的行数即非零的行数就是矩阵的秩了。用初等行变换化成梯矩阵,梯矩阵中非零行数就是矩阵的秩。矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。