‘壹’ python-027-递归-求序列最大值、计算第n个调和数、转换字符到整数
递归,emmmmmmm,拥有一种魅力,接近人的立即思维,容易理解,又不容易理解。
递归算法的优点: 它使我们能够简洁地利用重复结构呈现诸多问题。通过使算法描述以递归的方式利用重复结构,我们经常可以避开复杂的案例分析和嵌套循环。这种算法会得出可读性更强的算法描述,而且十分有效。
但是 ,递归的使用要根据相应的成本来看,每次递归python解释器都会给一个空间来记录函数活动状态。但是有时候内存成本很高,有时候将递归算法转为非递归算法是一种好办法。
当然我们可以换解释器、使用堆栈数据结构等方法,来管理递归的自身嵌套,减小储存的活动信息,来减小内存消耗。
最近算法学到了递归这一块,写了三个课后习题:
给一个序列S,其中包含n个元素,用递归查找其最大值。
输出:
调和数:Hn = 1 + 1/2 + 1/3 + ··· + 1/n
输出:
例如:"12345"<class 'str'> 转换为12345<class 'int'>
输出:
递归分为线性递归、二路递归、多路递归。
‘贰’ python中的递归
你没有搞懂递归是什么。这个return 1的结果是返回给它的上层递归中调用它的那条语句的,即return x*pow(x, n-1)这条语句,当n=0时pow(x, n-1)的值就是1。这条语句本身也是一条返回语句,它继续将结果返回给上层递归的调用者,直到最外层调用者。
‘叁’ python循环、递归
for 变量 in range(次数):<被执行的语句> 变量:表示每次循环的次数,0-1之间
range(n)n表示产生0到n-1的整数序列共N个 range(m,n) 产生m到n-1的整数序列,共n-m个
循环for语句 :for 循环变量 in遍历结构:<语句体1> else:<语句体2>
无限循环: while条件: 语句块
while 条件:语句体1 else: 语句体2
循环保留字:break continue
方法1:from random import random
from time import perf_counter
DARTS=1000
hits=0.0
start =perf_counter()
for i in range(1,DARTS+1):
x,y=random(),random()
dist=pow(x**2+y**2,0.5)
if dist<=1.0:
hits =hits+1
pi=4*(hits/DARTS)
print("圆周率是:{}".format(pi))
print("运行时间是{:.5f}s".format(perf_counter()-start))
方法2:
pi=0
n=100
for k in range(n):
pi += 1/pow(16,k)*(\
4/(8*k+1)-2/(8*k+4) - \
1/(8*k+5) - 1/(8*k+6))
print("圆周率值是:{}".format(pi))
def 函数名 (0个或者多个):函数体 renturn 返回值
def 函数名 (非可选参数,可选参数):函数体 renturn 返回值
参数传递的两种方式:位置传递,名称传递
科赫雪花:
import turtle
def koch(size,n):
if n==0:
turtle.fd(size)
else:
for angle in [0,60,-120,60]:
turtle.left(angle)
koch(size/3,n-1)
def main():
turtle.setup(400,200)
turtle.penup()
turtle.pendown()
turtle.pensize(2)
l=3
koch(600,l)
turtle.right(120)
turtle.pencolor('blue')
koch(600,l)
turtle.right(120)
turtle.pencolor('red')
koch(600,l)
turtle.speed(3000)
turtle.hideturtle()
main()
阶乘:
def fact(n):
s=1
for i in range(1,n+1):
s*=i
return s
c=eval(input("从键盘输入一个数字"))
print("阶乘结果",fact(c))
‘肆’ python中如何使用递归实现这个功能
简单说,解决以上问题的思路是,循环执行n*n-1,直到n=1时。
如何理解呢?第一点,函数中,调用自身函数的那部分句子,即return n *
recursion(n-1),把recursion(n-1)想象成另一个独立的函数,该函数的功能返回n-1的值,如果n的值是1,则返回1,函数运行结束。第二点,直观的看,可以把return
n * recursion(n-1)看成return n*(n-1)*(n-2)...1。而递归函数无非是在指定的条件下做普通的循环而已。
‘伍’ python递归函数
def Sum(m): #函数返回两个值:递归次数,所求的值 if m==1:return 1,m return 1+Sum(m-1)[0],m+Sum(m-1)[1]cishu=Sum(10)[0] print cishu >>> def Sum(m,n=1): ... if m==1:return n,m ... return n,m+Sum(m-1,n+1)[1] >>> print Sum(10)[0] 10 >>> print Sum(5)[0] 5
‘陆’ Python算法-爬楼梯与递归函数
可以看出来的是,该题可以用斐波那契数列解决。
楼梯一共有n层,每次只能走1层或者2层,而要走到最终的n层。不是从n-1或者就是n-2来的。
F(1) = 1
F(2) = 2
F(n) = F(n-1) + F(n-2) (n>=3)
这是递归写法,但是会导致栈溢出。在计算机中,函数的调用是通过栈进行实现的,如果递归调用的次数过多,就会导致栈溢出。
针对这种情况就要使用方法二,改成非递归函数。
将递归进行改写,实现循环就不会导致栈溢出
‘柒’ python函数递归的实现
只要获得所有点即可,x1为x轴起点,x2为x轴终点,gao为纵轴长度,i为切分次数.
x1=0
x2=10
gao=8
f(0,gao,x1,x2)
f(i=0,gao,x1,x2){
if(i==3){
return
}
t=(double)(x1+x2)
t=t/2
print(t,gao/2);
f(i+1,gao/2,x1,t);
f(i+1,gao/2,t,x2);
}
‘捌’ Python 实现递归
一、使用递归的背景
先来看一个☝️接口结构:
这个孩子,他是一个列表,下面有6个元素
展开children下第一个元素[0]看看:
发现[0]除了包含一些字段信息,还包含了 children 这个字段(喜当爹),同时这个children下包含了2个元素:
展开他的第一个元素,不出所料,也含有children字段(人均有娃)
可以理解为children是个对象,他包含了一些属性,特别的是其中有一个属性与父级children是一模一样的,他包含父级children所有的属性。
比如每个children都包含了一个name字段,我们要拿到所有children里name字段的值,这时候就要用到递归啦~
二、find_children.py
拆分理解:
1.首先import requests库,用它请求并获取接口返回的数据
2.若children以上还有很多层级,可以缩小数据范围,定位到children的上一层级
3.来看看定义的函数
我们的函数调用:find_children(node_f, 'children')
其中,node_f:json字段
children:递归对象
以下这段是实现递归的核心:
if items['children']:
items['children']不为None,表示该元素下的children字段还有子类数据值,此时满足if条件,可理解为 if 1。
items['children']为None,表示该元素下children值为None,没有后续可递归值,此时不满足if条件,可理解为 if 0,不会再执行if下的语句(不会再递归)。
至此,每一层级中children的name以及下一层级children的name就都取出来了
希望到这里能帮助大家理解递归的思路,以后根据这个模板直接套用就行
(晚安啦~)
源码参考: https://www.coder4.com/archives/5767
‘玖’ python递归算法经典实例有哪些
程序调用自身的编程技巧称为递归( recursion)。递归做为一种算法在程序设计语言中广泛应用。 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法。
它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。
递归的能力在于用有限的语句来定义对象的无限集合。一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。
Python
是完全面向对象的语言。函数、模块、数字、字符串都是对象。并且完全支持继承、重载、派生、多继承,有益于增强源代码的复用性。Python支持重载运算符和动态类型。相对于Lisp这种传统的函数式编程语言,Python对函数式设计只提供了有限的支持。有两个标准库(functools, itertools)提供了Haskell和Standard ML中久经考验的函数式程序设计工具。