⑴ python中怎么写excel文件
想要使用python实现对Excel文件的读写,首先需要安装专用的模块(如果你是大牛可以自己编写)xlrd模块。
解压以后启动cmd命令窗口,在其中输入xlrd解压后所在的目录,执行安装命令如图所示(cmd命令的使用请自行网络,本机已经配置好了python环境才可以正常安装)
在IDE环境中导入使用对应的xlrd模块,以eclipse环境为例如图所示
impot xlrd即可
打开Excel文件读取数据的简单示例如图所示:
import xlrd后
(最新的xlrd 0.9.4版本跨平台同时支持.xls和.xlsx)
新手们在使用时会遇到:OSError: Invalid argument:XXX错误,这是文件I/O错误。在windows中要使用正斜杠 (对:C:/bbbb.xlsx,错:('C:\bbbb.xlsx')
6
使用xlrd模块简单读取excel中的sheet和行、列数据。
sheets()[i],row_values(i),col_values(i)
⑵ Python处理Excel文件(csv, xls, xlsx)
Excel文件格式主要有csv,xlsx和xlsx,对于不同的格式,我们使用不同的包来进行处理。
其中, encoding='utf-8-sig' 是为了编码正常可以正确显示中文, spamreader 中的每一个 row 为list格式,可以循环取出每个单元格的值。
结果:
如果csv文件是数据类的,那么使用 pandas 包读写数据会更方便。
结果:
参数:
结果:
参数:
Excel文件有三层对象:工作薄、工作表和三元格,分别对应 openpyxl 包中的workbook、sheet和cell。
注 : openpyxl 功能全面,还支持:合并单元格、数学运算、单元格格式、迭代器 ws.iter_rows() 操作等。
注 : xlrd 打开为只读模式,不可修改。
结果:
结果:
⑶ python怎么把数据写入到excel
Python中一般使用xlrd(excel read)来读取Excel文件,使用xlwt(excel write)来生成Excel文件(可以控制Excel中单元格的格式),需要注意的是,用xlrd读取excel是不能对其进行操作的:xlrd.open_workbook()方法返回xlrd.Book类型,是只读的,不能对其进行操作。而xlwt.Workbook()返回的xlwt.Workbook类型的save(filepath)方法可以保存excel文件。
因此对于读取和生成Excel文件都非常容易处理,但是对于已经存在的Excel文件进行修改就比较麻烦了。不过,还有一个xlutils(依赖于xlrd和xlwt)提供复制excel文件内容和修改文件的功能。其实际也只是在xlrd.Book和xlwt.Workbook之间建立了一个管道而已。
xlutils.模块的()方法实现了这个功能,示例代码如下:
⑷ python对excel操作
Python对于Excel的操作是多种多样的,掌握了相关用法就可以随心所欲的操作数据了!
操作xls文件
xlrd(读操作):
import xlrd
1、引入xlrd模块
workbook=xlrd.open_workbook("36.xls")
2、打开[36.xls]文件,获取excel文件的workbook(工作簿)对象
names=workbook.sheet_names()
3、获取所有sheet的名字
worksheet=workbook.sheet_by_index(0)
4、通过sheet索引获得sheet对象
worksheet为excel表第一个sheet表的实例化对象
worksheet=workbook.sheet_by_name("各省市")
5、通过sheet名获得sheet对象
worksheet为excel表sheet名为【各省市】的实例化对象
nrows=worksheet.nrows
6、获取该表的总行数
ncols=worksheet.ncols
7、获取该表的总列数
row_data=worksheet.row_values(n)
8、获取该表第n行的内容
col_data=worksheet.col_values(n)
9、获取该表第n列的内容
cell_value=worksheet.cell_value(i,j)
10、获取该表第i行第j列的单元格内容
xlwt(写操作):
import xlwt
1、引入xlwt模块
book=xlwt.Workbook(encoding="utf-8")
2、创建一个Workbook对象,相当于创建了一个Excel文件
sheet = book.add_sheet('test')
3、创建一个sheet对象,一个sheet对象对应Excel文件中的一张表格。
sheet.write(i, j, '各省市')
4、向sheet表的第i行第j列,写入'各省市'
book.save('Data\\36.xls')
5、保存为Data目录下【36.xls】文件
操作xlsx文件
openpyxl(读操作):
import openpyxl
1、引入openpyxl模块
workbook=openpyxl.load_workbook("36.xlsx")
2、打开[36.xlsx]文件,获取excel文件的workbook(工作簿)对象
names=workbook.sheetnames
worksheet=workbook.worksheets[0]
worksheet=workbook["各省市"]
ws = workbook.active
6、获取当前活跃的worksheet,默认就是第一个worksheet
nrows=worksheet.max_row
7、获取该表的总行数
ncols=worksheet.max_column
8、获取该表的总列数
content_A1= worksheet['A1'].value
9、获取该表A1单元格的内容
content_A1=worksheet.cell(row=1,column=1).value
10、获取该表第1列第1列的内容
openpyxl(写操作):
workbook=openpyxl.Workbook()worksheet = workbook.active
3、获取当前活跃的worksheet,默认就是第一个worksheet
worksheet.title="test"
4、worksheet的名称设置为"test"
worksheet = workbook.create_sheet()
5、创建一个新的sheet表,默认插在工作簿末尾
worksheet.cell(i,j,'空')
6、第i行第j列的值改成'空'
worksheet["B2"]="空"
7、将B2的值改成'空'
worksheet.insert_cols(1)
8、在第一列之前插入一列
worksheet.append(["新增","台湾省"])
9、添加行
workbook.save("Data\\36.xlsx")
10、保存为Data目录下【36.xlsx】文件
pandas处理excel文件
pandas操作:
import pandas as pd
1、引入pandas模块
data = pd.read_excel('36.xls')
2、读取[36.xls]或者[36.xlsx]文件
data = pd.read_csv('36.csv')
3、读取[36.csv]文件
data=data.dropna(subset=['店铺'])
4、过滤掉data店铺列有缺失的数据
data.sort_values("客户网名", inplace=True)
5、将data数据按照客户网名列进行从小到大排序
data = pd.read_csv(36.csv, skiprows = [0,1,2],sep = None, skipfooter = 4)
6、读取[36.csv]文件,前三行和后四行的数据略过
data = data.fillna('空')
7、将data中的空白处填充成'空'
data.drop_plicates('订单','first',inplace=True)
8、data中的数据,按照【订单】列做去重处理,保留第一条数据
data=pd.DataFrame(data,columns=['订单','仓库'])
9、只保留data中【订单】【仓库】列的数据
data = data[(data[u'展现量'] > 0)]
10、只保留【展现量】列中大于0的数据
data= data[data["订单"].str.contains('000')]
11、只保留【订单】列中包含'000'的数据
data= data[data["仓库"]=='正品仓']
12、只保留【仓库】列是'正品仓'的数据
xs= data[data["店铺"]=='南极人']['销售额']
13、获取店铺是南极人的销售额数据
data['订单'] = data['订单'].str[3:7]
14、【订单】列的值只保留4-8个字节的值
data["邮资"] = np.where((data['店铺'].str.contains('T|t')) & -(data['仓库'] == '代发仓'), 8, data['邮资'])
15、满足店铺列包含 T 或 t 并且仓库不等于'代发仓'的话,将邮资的值改成8,否则值不变
data = np.array(data).tolist()
16、将data从DataFrame转换成列表
data=pd.DataFrame(data)
17、将列表转换成DataFrame格式
zhan = data[u'展现'].sum().round(2)
18、将data中所有展现列数据求和,并取两位小数
sum=data.groupby(['店铺'])['刷单'].sum()
19、将data中按照店铺对刷单进行求和
counts=data['店铺'].value_counts()
20、将data按照店铺进行计算
avg=data.groupby(['店铺'])['刷单'].mean()
21、将data按照店铺对刷单进行求平均数
count = pd.concat([counts,sum], axis=1, ignore_index=True, sort=True)
22、将counts和sum两个DataFrame进行了组合
count=count.rename(index=str, columns={0: "订单", 1: "成本"})
23、将新生成的DataFrame列名进行修改
data = pd.merge(sum, counts, how='left', left_on='店铺', right_on='店铺')
24、将列表转换成DataFrame格式
from openpyxl import Workbook
wb=Workbook()
ws1=wb.active
data.to_excel('36.xlsx')
wb.close()
25、data完整的写入到关闭过程,执行此操作的时候【36.xlsx】不能是打开状态
excel格式操作
样式处理:
1、打开【36.xlsx】
sheet=workbook.worksheets[0]
2、将第一个sheet对象赋值给sheet
sheet.column_dimensions['A'].width = 20.0
3、将A列的宽度设置为20
sheet.row_dismensions[1].height = 20.0
4、将第一行的行高设置为20
sheet.merge_cells('A1:A2')
5、将sheet表A1和A2单元格合并
sheet.unmerge_cells('A1:A2')
6、将sheet表A1和A2单元格取消合并
sheet.insert_rows(2,2)
7、将sheet表从第2行插入2行
sheet.insert_cols(3,2)
8、将sheet表从第3列插入2列
sheet.delete_rows(2)
9、删除第2行
sheet.delete_cols(3, 2)
10、将sheet表从第3列开始删除2列
from openpyxl.styles import Font, Border, PatternFill, colors, Alignment
11、分别引入字体、边框、图案填充、颜色、对齐方式
sheet.cell(i,j).font = Font(name='Times New Roman', size=14, bold=True, color=colors.WHITE)
12、设置sheet表第 i 行第 j 列的字体
sheet.cell(i,j).alignment = Alignment(horizontal='center', vertical='center')
13、设置sheet表第 i 行第 j 列的字体对齐方式
left, right, top, bottom = [Side(style='thin', color='000000')] * 4sheet.cell(i,j).border = Border(left=left, right=right, top=top, bottom=bottom)
14、引入边框样式并调用
fill = PatternFill("solid", fgColor="1874CD")sheet.cell(1,j).fill = fill
15、引入填充样式,并调用
import xlrd
from openpyxl import Workbook
from openpyxl import load_workbook
workbook=load_workbook(filename='C:/Users/EDZ/Desktop/工作/2021.08.03/大兄弟.xlsx')
sheet=workbook.active
sheet.insert_cols(idx=1)
sheet.merge_cells(A1:A3)
sheet['A1']=['上海','山东','浙江']
⑸ python将数组写入excel文件
# 将数据写入新文件
def data_write(file_path, datas):
f = xlwt.Workbook()
sheet1 = f.add_sheet(u'sheet1',cell_overwrite_ok=True) #创建sheet
#将数据写入第 i 行,第 j 列
i = 0
for data in datas:
for j in range(len(data)):
sheet1.write(i,j,data[j])
i = i + 1
f.save(file_path) #保存文件
⑹ Python中操作Excel最好用的模块是
Python中的模块也称为库,在Python中操作Excel的模块有很多。
优缺点如下:
**1、Pandas模块**
Pandas是Python的一一个开源数据分析模块,可用于数据挖掘和数据分析,同时也提供数据清洗功能,可以说它是日前Python数据分析的必备工具之一。Pandas能够处理类似电子表格的数据,用于数据快速加载、操作、对齐、合并、数据预处理等。
Pandas通过对Excel文件的读写实现数据输入、输出,Pandas支持.xls和.xlsx格式文件的读写,支持只加载每个表的单一工作页。
import pandas as pd
df=pd.read_excel(r'E:ban.xlsx') #pandas 导入库获取excel表的数据内容
df`
**2、xlwings模块**
xlwings模块可以实现Python中调用Excel,也可以从Excel调用Python,这个模块支持支持.xls和.xlsx格式文件的读写,支持对这类文件的操作,还支持使用VBA,具有强大的转换功能,并且可以处理大部分数据类型。
**3、Xlrd模块**
xlrd模块可以读取Excel文件,其对Excel文件的读取可以实现比较精细的控制。虽然现在使用Pandas模块读取和保存Excel文件往往更加方便快捷,但在某些场景下,依然需要xlrd这种更底层的模块来实现对Excel文件读取的控制。
xlrd模块支持.xls、.xlsx格式文件的读取,但不支持写信息。
**4、xlwt模块**
前面xlrd模块可以读取Excel文件,但不能写。而xlwt模块可以写、可以修改Excel文件,但不能读,且只支持.xls格式文件的写操作。
**5、xlutils模块**
xlutils也是一个处理Excel文件的模块,但它不能对Excel文件进行读和写的操作,但依赖于xlrd模块和xlwt模块。xlutils模块支持.xls格式文件,不支持.xlsx格式文件。
**6、openpyxl模块**
openpyxl模块可以对.xlsx格式的Excel文件进行读写操作,特点是读取快、写入慢,且不能操作.xls格式文件。
**7、xlsxwriter模块**
xlsxwriter模块支持多种Excel功能,可以写.xlsx格式的Excel文件,而且速度快、占用内存空间小,但不支持读或者修改现有的Excel文件。
**8、win32com模块**
win32com模块支持.xls、.xlsx格式的Excel文件的读、写和修改,读写速度快。但win32com模块存在于pywin32的模块中,自身没有完善的文档,使用起来不太方便。
**9、分析总结**
Pandas模块把Excel当作数据读写的容器,为其强大的数据分析服务,因此读写性能的表现中规中矩。xlwings和win32com这两个模块都拥有很好的读写性能,强大的转换器可以处理大部分数据类型,同时,可以在程序运行时,在打开的Excel文件中进行实时操作,实现过程的可视化。另外,xlwings模块的数据结构转换器使其可以快速地为Excel文件添加二维数据结构,而不需要在Excel文件中重定位数据的行和列,因此笔者认为,从读写的便捷性来看,xlwings模块比较好用一些。
⑺ 如何通过Python实现Excel文件读写
参考代码如下:
# -*- coding: utf-8 -*-
import xdrlib ,sys
import xlrd
def open_excel(file= 'file.xls'):
try:
data = xlrd.open_workbook(file)
return data
except Exception,e:
print str(e)
#根据索引获取Excel表格中的数据 参数:file:Excel文件路径 colnameindex:表头列名所在行的所以 ,by_index:表的索引
def excel_table_byindex(file= 'file.xls',colnameindex=0,by_index=0):
data = open_excel(file)
table = data.sheets()[by_index]
nrows = table.nrows #行数
ncols = table.ncols #列数
colnames = table.row_values(colnameindex) #某一行数据
list =[]
for rownum in range(1,nrows):
row = table.row_values(rownum)
if row:
app = {}
for i in range(len(colnames)):
app[colnames[i]] = row[i]
list.append(app)
return list
#根据名称获取Excel表格中的数据 参数:file:Excel文件路径 colnameindex:表头列名所在行的所以 ,by_name:Sheet1名称
def excel_table_byname(file= 'file.xls',colnameindex=0,by_name=u'Sheet1'):
data = open_excel(file)
table = data.sheet_by_name(by_name)
nrows = table.nrows #行数
colnames = table.row_values(colnameindex) #某一行数据
list =[]
for rownum in range(1,nrows):
row = table.row_values(rownum)
if row:
app = {}
for i in range(len(colnames)):
app[colnames[i]] = row[i]
list.append(app)
return list
def main():
tables = excel_table_byindex()
for row in tables:
print row
tables = excel_table_byname()
for row in tables:
print row
if __name__=="__main__":
main()
⑻ python怎么把数据输出到excel
python导出数据到excel文件的方法:
1、调用Workbook()对象中的add_sheet()方法
1
2
wb = xlwt.Workbook()
ws = wb.add_sheet('A Test Sheet')
2、通过add_sheet()方法中的write()函数将数据写入到excel中,然后使用save()函数保存excel文件
1
2
3
4
5
6
7
ws.write(0, 0, 1234.56, style0)
ws.write(1, 0, datetime.now(), style1)
ws.write(2, 0, 1)
ws.write(2, 1, 1)
ws.write(2, 2, xlwt.Formula("A3+B3"))
wb.save('example.xls')
完整代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import xlwtfrom datetime import datetime
style0 = xlwt.easyxf('font: name Times New Roman, color-index red, bold on',num_format_str='#,##0.00')
style1 = xlwt.easyxf(num_format_str='D-MMM-YY')
wb = xlwt.Workbook()
ws = wb.add_sheet('A Test Sheet')
ws.write(0, 0, 1234.56, style0)
ws.write(1, 0, datetime.now(), style1)
ws.write(2, 0, 1)
ws.write(2, 1, 1)
ws.write(2, 2, xlwt.Formula("A3+B3"))
wb.save('example.xls')
程序执行结果如下:
更多Python知识,请关注:Python自学网!!
(推荐操作系统:windows7系统、Python 3.9.1,DELL G3电脑。)