1. 什么是python第三方模块
Python内置的标准库之外的所有模块都称为第三方模块。
而标准库,指的是你安装Python程序(解释器)后,在安装目录里存在模块。
参考:常用Python标准库
2. python和哪个第三方库组合能处理Excel数据
Python和第三方库组合处理Excel数据的有很多,常见的有:xlwings、xlsxwriter、openpyxl、xlwt、xlrd、xluntils、pyExcelerator等等。
不同的库用法也有些不同,其实个人觉得首先还是需要把Excel本身用好,本身用好了,其他编程的用起来就会省事得多了。
3. Python必学的模块有哪些
简单来说,模块就是一堆代码实现某个功能,它们是已经写好的.py文件,在我们的.py文件中只需要用import导入模块就能使用它的功能了。
Python中的模块有内置标准模块、开源模块和自定义模块。
内置标准模块就是Python自带的模块,即下载好Python就可以直接导入使用的模块,例如我们之前使用过的math模块、time模块等。
开源模块就是不收费的由好心人写好的模块,我们可以通过下载这些模块后导入使用,开源模块一般也被我们称为第三方模块,例如数据处理工具NumPy、Pandas,以及深度学习着名框架Tensorflow都属于开源模块。
自定义模块与开源模块相对应,开源模块是他人写的,而自定义模块就是自己写好的模块。
Python常见的三个模块
一、time与datetime模块
在Python中,通常有这几种方式来表示时间:
时间戳(timestamp):通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型。
格式化的时间字符串(Format String)
结构化的时间(struct_time):struct_time元组共有9个元素共九个元素:(年,月,日,时,分,秒,一年中第几周,一年中第几天,夏令时)
二、random模块
三、os模块
os模块是与操作系统交互的一个接口
4. python内置模块和第三方模块和自定义模块的顺序
内置的模块(python解释器自带的)、第三方(开发者编写的模块)、自定义的模块。
1、先从内存中找。
2、再从内置模块中找。
3、最后从sys.path中找(环境变量)一定要分清楚谁是执行文件谁是被导入文件sys返回的是一个列表,里面放了一些文件的路径,但是第一个路径永远是文件所在的文件夹。
5. 盘点Python常用的模块和包
模块
1.定义
计算机在开发过程中,代码越写越多,也就越难以维护,所以为了编写可维护的代码,我们会把函数进行分组,放在不同的文件里。在python里,一个.py文件就是一个模块。
2.优点:
提高代码的可维护性。
提高代码的复用,当模块完成时就可以在其他代码中调用。
引用其他模块,包含python内置模块和其他第三方模块。
避免函数名和变量名等名称冲突。
python内建模块:
1.sys模块
2.random模块
3.os模块:
os.path:讲解
https://www.cnblogs.com/yufeihlf/p/6179547.html
数据可视化
1.matplotlib :
是Python可视化程序库的泰斗,它的设计和在1980年代被设计的商业化程序语言MATLAB非常接近。比如pandas和Seaborn就是matplotlib的外包,它们让你能用更少的代码去调用 matplotlib的方法。
访问:
https://matplotlib.org/
颜色:
https://www.cnblogs.com/darkknightzh/p/6117528.html
教程:
https://wizardforcel.gitbooks.io/matplotlib-user-guide/3.1.html
2.Seaborn:
它是构建在matplotlib的基础上的,用简洁的代码来制作好看的图表。Seaborn跟matplotlib最大的区别就是它的默认绘图风格和色彩搭配都具有现代美感。
访问:
http://seaborn.pydata.org/index.html
3.ggplot:
gplot 跟 matplotlib 的不同之处是它允许你叠加不同的图层来完成一幅图
访问:
http://ggplot.yhathq.com/
4.Mayavi:
Mayavi2完全用Python编写,因此它不但是一个方便实用的可视化软件,而且可以方便地用Python编写扩展,嵌入到用户编写的Python程序中,或者直接使用其面向脚本的API:mlab快速绘制三维图
访问:http://code.enthought.com/pages/mayavi-project.html
讲解:https://blog.csdn.net/ouening/article/details/76595427https://www.jianshu.com/p/81e6f4f1cdd8
5.TVTK:
TVTK库对标准的VTK库进行包装,提供了Python风格的API、支持Trait属性和numpy的多维数组。
VTK (http://www.vtk.org/) 是一套三维的数据可视化工具,它由C++编写,包涵了近千个类帮助我们处理和显示数据
讲解:https://docs.huihoo.com/scipy/scipy-zh-cn/tvtk_intro.html
机器学习
1.Scikit-learn
是一个简单且高效的数据挖掘和数据分析工具,易上手,可以在多个上下文中重复使用。它基于NumPy, SciPy 和 matplotlib,开源,可商用(基于 BSD 许可)。
访问:
讲解:https://blog.csdn.net/finafily0526/article/details/79318401
2.Tensorflow
最初由谷歌机器智能科研组织中的谷歌大脑团队(Google Brain Team)的研究人员和工程师开发。该系统设计的初衷是为了便于机器学习研究,能够更快更好地将科研原型转化为生产项目。
相关推荐:《Python视频教程》
Web框架
1.Tornado
访问:http://www.tornadoweb.org/en/stable/
2.Flask
访问:http://flask.pocoo.org/
3.Web.py
访问:http://webpy.org/
4.django
https://www.djangoproject.com/
5.cherrypy
http://cherrypy.org/
6.jinjs
http://docs.jinkan.org/docs/jinja2/
GUI 图形界面
1.Tkinter
https://wiki.python.org/moin/TkInter/
2.wxPython
https://www.wxpython.org/
3.PyGTK
http://www.pygtk.org/
4.PyQt
https://sourceforge.net/projects/pyqt/
5.PySide
http://wiki.qt.io/Category:LanguageBindings::PySide
科学计算
教程
https://docs.huihoo.com/scipy/scipy-zh-cn/index.html#
1.numpy
访问
http://www.numpy.org/
讲解
https://blog.csdn.net/lm_is_dc/article/details/81098805
2.sympy
sympy是一个Python的科学计算库,用一套强大的符号计算体系完成诸如多项式求值、求极限、解方程、求积分、微分方程、级数展开、矩阵运算等等计算问题
访问
https://docs.sympy.org/0.7.1/guide.html#guide
讲解
https://www.jianshu.com/p/339c91ae9f41
解方程
https://www.cnblogs.com/zyg123/p/10549354.html
3.SciPy
官网
https://www.scipy.org/
讲解
https://blog.csdn.net/wsp_1138886114/article/details/80444621
4.pandas
官网
http://pandas.pydata.org/
讲解
https://www.cnblogs.com/linux-wangkun/p/5903945.html
5.blaze
官网
http://blaze.readthedocs.io/en/latest/index.html
密码学
1.cryptography
https://pypi.python.org/pypi/cryptography/
2.hashids
http://www.oschina.net/p/hashids
3.Paramiko
http://www.paramiko.org/
4.Passlib
https://pythonhosted.org/passlib/
5.PyCrypto
https://pypi.python.org/pypi/pycrypto
6.PyNacl
http://pynacl.readthedocs.io/en/latest/
爬虫相关
requests
http://www.python-requests.org/
scrapy
https://scrapy.org/
pyspider
https://github.com/binux/pyspider
portia
https://github.com/scrapinghub/portia
html2text
https://github.com/Alir3z4/html2text
BeautifulSoup
https://www.crummy.com/software/BeautifulSoup/
lxml
http://lxml.de/
selenium
http://docs.seleniumhq.org/
mechanize
https://pypi.python.org/pypi/mechanize
PyQuery
https://pypi.python.org/pypi/pyquery/
creepy
https://pypi.python.org/pypi/creepy
gevent
一个高并发的网络性能库
http://www.gevent.org/
图像处理
bigmoyan
http://scikit-image.org/
Python Imaging Library(PIL)
http://www.pythonware.com/procts/pil/
pillow:
http://pillow.readthedocs.io/en/latest/
自然语言处理
1.nltk:
http://www.nltk.org/
教程
https://blog.csdn.net/wizardforcel/article/details/79274443
2.snownlp
https://github.com/isnowfy/snownlp
3.Pattern
https://github.com/clips/pattern
4.TextBlob
http://textblob.readthedocs.io/en/dev/
5.Polyglot
https://pypi.python.org/pypi/polyglot
6.jieba:
https://github.com/fxsjy/jieba
数据库驱动
mysql-python
https://sourceforge.net/projects/mysql-python/
PyMySQL
https://github.com/PyMySQL/PyMySQL
PyMongo
https://docs.mongodb.com/ecosystem/drivers/python/
pymongo
MongoDB库
访问:https://pypi.python.org/pypi/pymongo/
redis
Redis库
访问:https://pypi.python.org/pypi/redis/
cxOracle
Oracle库
访问:https://pypi.python.org/pypi/cx_Oracle
SQLAlchemy
SQL工具包及对象关系映射(ORM)工具
访问:http://www.sqlalchemy.org/
peewee,
SQL工具包及对象关系映射(ORM)工具
访问:https://pypi.python.org/pypi/peewee
torndb
Tornado原装DB
访问:https://github.com/bdarnell/torndb
Web
pycurl
URL处理工具
smtplib模块
发送电子邮件
其他库暂未分类
1.PyInstaller:
是一个十分有用的第三方库,它能够在Windows、Linux、 Mac OS X 等操作系统下将 Python 源文件打包,通过对源文件打包, Python 程序可以在没有安装 Python 的环境中运行,也可以作为一个 独立文件方便传递和管理。
2.Ipython
一种交互式计算和开发环境
讲解
https://www.cnblogs.com/zzhzhao/p/5295476.html
ls、cd 、run、edit、clear、exist
6. Python 常用的标准库以及第三方库有哪些
标准库
Python拥有一个强大的标准库。Python语言的核心只包含数字、字符串、列表、字典、文件等常见类型和函数,而由Python标准库提供了系统管理、网络通信、文本处理、数据库接口、图形系统、XML处理等额外的功能。
Python标准库的主要功能有:
1.文本处理,包含文本格式化、正则表达式匹配、文本差异计算与合并、Unicode支持,二进制数据处理等功能
2.文件处理,包含文件操作、创建临时文件、文件压缩与归档、操作配置文件等功能
3.操作系统功能,包含线程与进程支持、IO复用、日期与时间处理、调用系统函数、日志(logging)等功能
4.网络通信,包含网络套接字,SSL加密通信、异步网络通信等功能
5.网络协议,支持HTTP,FTP,SMTP,POP,IMAP,NNTP,XMLRPC等多种网络协议,并提供了编写网络服务器的框架
6.W3C格式支持,包含HTML,SGML,XML的处理。
7.其它功能,包括国际化支持、数学运算、HASH、Tkinter等
Python社区提供了大量的第三方模块,使用方式与标准库类似。它们的功能覆盖科学计算、Web开发、数据库接口、图形系统多个领域。第三方模块可以使用Python或者C语言编写。SWIG,SIP常用于将C语言编写的程序库转化为Python模块。Boost C++ Libraries包含了一组函式库,Boost.Python,使得以Python或C++编写的程式能互相调用。Python常被用做其他语言与工具之间的“胶水”语言。
着名第三方库
1.Web框架
Django: 开源Web开发框架,它鼓励快速开发,并遵循MVC设计,开发周期短。
ActiveGrid: 企业级的Web2.0解决方案。
Karrigell: 简单的Web框架,自身包含了Web服务,py脚本引擎和纯python的数据库PyDBLite。
Tornado: 一个轻量级的Web框架,内置非阻塞式服务器,而且速度相当快
webpy: 一个小巧灵活的Web框架,虽然简单但是功能强大。
CherryPy: 基于Python的Web应用程序开发框架。
Pylons: 基于Python的一个极其高效和可靠的Web开发框架。
Zope: 开源的Web应用服务器。
TurboGears: 基于Python的MVC风格的Web应用程序框架。
Twisted: 流行的网络编程库,大型Web框架。
Quixote: Web开发框架。
2.科学计算
Matplotlib: 用Python实现的类matlab的第三方库,用以绘制一些高质量的数学二维图形。
SciPy: 基于Python的matlab实现,旨在实现matlab的所有功能。
NumPy: 基于Python的科学计算第三方库,提供了矩阵,线性代数,傅立叶变换等等的解决方案。
3.GUI
PyGtk: 基于Python的GUI程序开发GTK+库。
PyQt: 用于Python的QT开发库。
WxPython: Python下的GUI编程框架,与MFC的架构相似。
4.其它
BeautifulSoup: 基于Python的HTML/XML解析器,简单易用。
PIL: 基于Python的图像处理库,功能强大,对图形文件的格式支持广泛。
PyGame: 基于Python的多媒体开发和游戏软件开发模块。
Py2exe: 将python脚本转换为windows上可以独立运行的可执行程序。