导航:首页 > 编程语言 > python金融数据分析案例

python金融数据分析案例

发布时间:2023-01-19 04:06:27

1. 用python怎么做量化投资

本文将会讲解量化投资过程中的基本流程,量化投资无非这几个流程,数据输入------策略书写------回测输出
其中策略书写部分还涉及到编程语言的选择,如果不想苦恼数据输入和回测输出的话,还要选择回测平台。
一、数据
首先,必须是数据,数据是量化投资的基础
如何得到数据?

Wind:数据来源的最全的还是Wind,但是要付费,学生可以有免费试用的机会,之后还会和大家分享一下怎样才Wind里摘取数据,Wind有很多软件的借口,Excel,Matlab,Python,C++。
预测者网:不经意间发现,一个免费提供股票数据网站 预测者网,下载的是CSV格式
TB交易开拓者:Tradeblazer,感谢@孙存浩提供数据源
TuShare:TuShare -财经数据接口包,基于Python的财经数据包,利用Python进行摘取
如何存储数据?
Mysql
如何预处理数据?

空值处理:利用DataFrame的fill.na()函数,将空值(Nan)替换成列的平均数、中位数或者众数
数据标准化
数据如何分类?
行情数据
财务数据
宏观数据
二、计算语言&软件

已经有很多人在网上询问过该选择什么语言?笔者一开始用的是matlab,但最终选择了python
python:库很多,只有你找不到的,没有你想不到,和量化这块结合比较紧密的有:
Numpy&Scipy:科学计算库,矩阵计算
Pandas:金融数据分析神器,原AQR资本员工写的一个库,处理时间序列的标配

Matplotlib:画图库
scikit-learn:机器学习库
statsmodels:统计分析模块
TuShare:免费、开源的python财经数据接口包

Zipline:回测系统
TaLib:技术指标库
matlab:主要是矩阵运算、科学运算这一块很强大,主要有优点是WorkSpace变量可视化

python的Numpy+Scipy两个库完全可以替代Matlab的矩阵运算
Matplotlib完克Matlab的画图功能
python还有很多其他的功能
pycharm(python的一款IDE)有很棒的调试功能,能代替Matlab的WorkSpace变量可视化
推荐的python学习文档和书籍
关于python的基础,建议廖雪峰Python 2.7教程,适合于没有程序基础的人来先看,涉及到python的基本数据类型、循环语句、条件语句、函数、类与对象、文件读写等很重要的基础知识。

涉及到数据运算的话,其实基础教程没什么应用,python各类包都帮你写好了,最好的学习资料还是它的官方文档,文档中的不仅有API,还会有写实例教程
pandas文档
statsmodels文档
scipy和numpy文档
matplotlib文档

TuShare文档
第二,推荐《利用Python进行数据分析》,pandas的开发初衷就是用来处理金融数据的
三、回测框架和网站
两个开源的回测框架
PyAlgoTrade - Algorithmic Trading

Zipline, a Pythonic Algorithmic Trading Library

2. 如何利用python进行数据分析

作者Wes McKinney是pandas库的主要作者,所以本书也可以作为利用Python实现数据密集型应用的科学计算实践指南。本书适合刚刚接触Python的分析人员以及刚刚接触科学计算的Python程序员
•将IPython这个交互式Shell作为你的首要开发环境。
•学习NumPy(Numerical Python)的基础和高级知识。
•从pandas库的数据分析工具开始。
•利用高性能工具对数据进行加载、清理、转换、合并以及重塑。
•利用matplotlib创建散点图以及静态或交互式的可视化结果。
•利用pandas的groupby功能对数据集进行切片、切块和汇总操作。
•处理各种各样的时间序列数据。
•通过详细的案例学习如何解决Web分析、社会科学、金融学以及经•济学等领域的问题。

3. python数据分析有什么用

数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。案例(推荐学习:Python视频教程)
Suncorp-Metway使用数据分析实现智慧营销
Suncorp-Metway是澳大利亚一家提供普通保险、银行业、寿险和理财服务的多元化金融服务集团, 旗下拥有5个业务部门,管理着14类商品,由公司及共享服务部门提供支持,其在澳大利亚和新西兰的运营业务与900多万名客户有合作关系。
该公司过去十年间的合并与收购,使客户群增长了200%,这极大增加了客户群数据管理的复杂性,如果解决不好,必将对公司利润产生负面影响.为此,IBM公司为其提供了一套解决方案,组件包括:IBM Cognos 8 BI、IBMInitiate Master Data Service谀IBM Unica。
采用该方案后,Suncorp-Metway公司至少在以下三项业务方面取得显着成效:
1、显着增加了市场份额,但没有增加营销开支;
2、每年大约能够节省1000万美元的集成与相关成本;
3、避免向同一户家庭重复邮寄相同信函并且消除冗余系统,从而同时降低直接邮寄与运营成本。
由此可见,Suncorp-Metway公司通过该方案将此前多个孤立来源的数据集成起来,实现智慧营销,对控制成本,增加利润起到非常积极的作用。
在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。例如J.开普勒通过分析行星角位置的观测数据,找出了行星运动规律。又如,一个企业的领导人要通过市场调查,分析所得数据以判定市场动向,从而制定合适的生产及销售计划。因此数据分析有极广泛的应用范围。
更多Python相关技术文章,请访问Python教程栏目进行学习!以上就是小编分享的关于python数据分析有什么用的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!

4. 如何用Python做金融数据分析

所说所有的变量都是对象。 对象在python里,其实是一个指针,指向一个数据结构,数据结构里有属性,有方法。 对象通常就是指变量。从面向对象OO的概念来讲,对象是类的一个实例。在python里很简单,对象就是变量

5. 如何用python 爬虫抓取金融数据

获取数据是数据分析中必不可少的一部分,而网络爬虫是是获取数据的一个重要渠道之一。鉴于此,我拾起了Python这把利器,开启了网络爬虫之路。

本篇使用的版本为python3.5,意在抓取证券之星上当天所有A股数据。程序主要分为三个部分:网页源码的获取、所需内容的提取、所得结果的整理。

一、网页源码的获取

很多人喜欢用python爬虫的原因之一就是它容易上手。只需以下几行代码既可抓取大部分网页的源码。

为了减少干扰,我先用正则表达式从整个页面源码中匹配出以上的主体部分,然后从主体部分中匹配出每只股票的信息。代码如下。

pattern=re.compile('<tbody[sS]*</tbody>')
body=re.findall(pattern,str(content)) #匹配<tbody和</tbody>之间的所有代码pattern=re.compile('>(.*?)<')
stock_page=re.findall(pattern,body[0]) #匹配>和<之间的所有信息

其中compile方法为编译匹配模式,findall方法用此匹配模式去匹配出所需信息,并以列表的方式返回。正则表达式的语法还挺多的,下面我只罗列所用到符号的含义。

语法 说明

. 匹配任意除换行符“ ”外的字符

* 匹配前一个字符0次或无限次

? 匹配前一个字符0次或一次

s 空白字符:[<空格> fv]

S 非空白字符:[^s]

[...] 字符集,对应的位置可以是字符集中任意字符

(...) 被括起来的表达式将作为分组,里面一般为我们所需提取的内容

正则表达式的语法挺多的,也许有大牛只要一句正则表达式就可提取我想提取的内容。在提取股票主体部分代码时发现有人用xpath表达式提取显得更简洁一些,看来页面解析也有很长的一段路要走。

三、所得结果的整理

通过非贪婪模式(.*?)匹配>和<之间的所有数据,会匹配出一些空白字符出来,所以我们采用如下代码把空白字符移除。

stock_last=stock_total[:] #stock_total:匹配出的股票数据for data in stock_total: #stock_last:整理后的股票数据
if data=='':
stock_last.remove('')

最后,我们可以打印几列数据看下效果,代码如下

print('代码',' ','简称',' ',' ','最新价',' ','涨跌幅',' ','涨跌额',' ','5分钟涨幅')for i in range(0,len(stock_last),13): #网页总共有13列数据
print(stock_last[i],' ',stock_last[i+1],' ',' ',stock_last[i+2],' ',' ',stock_last[i+3],' ',' ',stock_last[i+4],' ',' ',stock_last[i+5])

6. 如何利用python进行数据分析

近年来分析学在数据、网络、金融等领域获得了突出的地位。应用各种软件组合起来进行数据收集,数据管理,以及数据分析,得出的结论用作商业决策,业务需求分析等等。分析学用于研究一个产品的市场效应,银行的贷款决定,这些都只是分析学的冰山一角。它在大数据,安全,数字和软件分析等领域有很深远的影响,下面是Python在分析学中的主要作用的一个延续:
在这个信息过载的世界,只有那些可以利用解析数据的优势来得出见解的人会获益。Python对于大数据的解释和分析具有很重要的作用。分析公司开发的很多工具都是基于Python来约束大数据块。分析师们会发现Python并不难学,它是一个强有力的数据管理和业务支持的媒介。
使用单一的语言来处理数据有它的好处。如果你以前曾经使用过C++或者Java,那么对你来说,Python应该很简单。数据分析可以使用Python实现,有足够的Python库来支持数据分析。 Pandas是一个很好的数据分析工具,因为它的工具和结构很容易被用户掌握。对于大数据来说它无疑是一个最合适的选择。即使是在数据科学领域,Python也因为它的“开发人员友好性”而使其他语言相形见绌。一个数据科学家熟悉Python的可能性要比熟悉其他语言的可能性高得多。
除了Python在数据分析中那些很明显的优点(易学,大量的在线社区等等)之外,在数据科学中的广泛使用,以及我们今天看到的大多数基于网络的分析,是Python在数据分析领域得以广泛传播的主要原因。
不论是金融衍生品还时大数据分析,Python都发挥了重要的作用。就前者而言,Python能够很好地和其它系统,软件工具以及数据流结合在一起,当然也包括R。用Python来对大数据做图表效果更好,它在速度和帮助方面也一样可靠。有些公司使用Python进行预测分析和统计分析。

7. 《利用Python进行数据分析》epub下载在线阅读全文,求百度网盘云资源

《利用Python进行数据分析》(Wes McKinney)电子书网盘下载免费在线阅读

链接:https://pan..com/s/1ubJ81dbmvUqRI_dKDR3zlA

提取码:HQUK

书名:利用Python进行数据分析

作者:Wes McKinney

译者:唐学韬

豆瓣评分:8.6

出版社:机械工业出版社

出版年份:2013-11-18

页数:464

内容简介:

还在苦苦寻觅用Python控制、处理、整理、分析结构化数据的完整课程?本书含有大量的实践案例,你将学会如何利用各种Python库(包括NumPy、pandas、matplotlib以及IPython等)高效地解决各式各样的数据分析问题。

由于作者Wes McKinney是pandas库的主要作者,所以本书也可以作为利用Python实现数据密集型应用的科学计算实践指南。本书适合刚刚接触Python的分析人员以及刚刚接触科学计算的Python程序员。

•将IPython这个交互式Shell作为你的首要开发环境。

•学习NumPy(Numerical Python)的基础和高级知识。

•从pandas库的数据分析工具开始。

•利用高性能工具对数据进行加载、清理、转换、合并以及重塑。

•利用matplotlib创建散点图以及静态或交互式的可视化结果。

•利用pandas的groupby功能对数据集进行切片、切块和汇总操作。

•处理各种各样的时间序列数据。

•通过详细的案例学习如何解决Web分析、社会科学、金融学以及经•济学等领域的问题。

作者简介:

Wes McKinney 资深数据分析专家,对各种Python库(包括NumPy、pandas、matplotlib以及IPython等)等都有深入研究,并在大量的实践中积累了丰富的经验。撰写了大量与Python数据分析相关的经典文章,被各大技术社区争相转载,是Python和开源技术社区公认的权威人物之一。开发了用于数据分析的着名开源Python库——pandas,广获用户好评。在创建Lambda Foundry(一家致力于企业数据分析的公司)之前,他曾是AQR Capital Management的定量分析师。

8. 入门Python数据分析,请问看什么书籍

如果你已经决定学习Python数据分析,但是之前没有编程经验,那么,这6本书将会是你的正确选择。

《Python科学计算》

从发行版的安装开始,这本书将科学计算及可视化的常见函数库,如numpy、scipy、sympy、matplotlib、traits、tvtk、mayavi、opencv等等,都进行了较为详细地介绍。由于涉及面太广,可能对于单个函数库来说还不够深入,但是这本书能够让人快速上手,全面了解科学计算所用到的常用函数库。进而在此基础上选择自己需要的函数库进行深入学习,相对来说要容易得多。

《NumPyBeginner's Guide 2nd》/《Python数据分析基础教程:NumPy学习指南(第2版)》

面向新手的一本Numpy入门指南。整本书可谓是短小精干,条理清晰,将Numpy的基础内容讲得清清楚楚明明白白。此书的作者还写过一本《NumPyCookbook》/《NumPy攻略:Python科学计算与数据分析》,但这本书相比于前者,就显得结构有些杂乱,内容上也有些不上不下,如果要看的话,建议看完第一本再来看这本。在这里还想顺便吐槽一下这两本书的中文书名翻译。为了能够多卖几本,出版社也是蛮拼的,想方设法都要跟数据分析几个字挂上钩,就好像现在某些书总要扯上云和大数据一样。此外,还有一本《LearningSciPy for Numerical and Scientific Computing》的书,可以作为SciPy的入门教程来学习(似乎还没出中文版)。

《Pythonfor Data Analysis》/《利用Python进行数据分析》

这本书也是从numpy讲起,侧重于数据分析的各个流程,包括数据的存取、规整、可视化等等。此外,本书还涉及了pandas这个库,有兴趣的可以看看。

《MachineLearning in Action》/《机器学习实战》

Python机器学习的白盒入门教程,着重于讲解机器学习的各类常用算法,以及如何用Python来实现它们。这是一本教你如何造轮子的书,但是造出来的轮子似乎也不怎么好用就是了。不过,对于立志要造汽车的人们来说,了解一下轮子的结构和原理,还是十分必要的。此外,打算阅读此书之前,如果各位的高数线代概率论都忘得差不多了的话,还是先补一补比较好。

《BuildingMachine Learning Systems with Python》/《机器学习系统设计》

Python机器学习的黑盒入门教程。如果说上一本书是教你如何组装轮子的话,这本书就是直接告诉你怎么把轮子转起来以及如何才能转得更好。至于轮子为什么能转起来,请参阅上一本书。另外,可以配合《Learning scikit-learn:Machine Learning in Python》这本书来阅读(暂无中文版)。这本书是针对Python的机器学习库scikit-learn进行专门讲解的一本书,100页左右,可以作为官方文档的拓展读物。

《Pythonfor Finance》

教你用Python处理金融数据的一本书,应该是中国人写的,Packt出版,不过似乎现在还没有中文版。比起前面几本书,这本书专业性要强一些,侧重于金融数据分析。这本书我还没怎么看,也写不出什么更详细的介绍。之所以把它列出来,是因为在查资料的时候发现,O'Reilly年底似乎也准备出一本《Python for Finance》。看来Python真的是越来越火了。

9. python金融分析的实验目的和要求

python金融分析的实验目的和要求:Python适合做数据分析,有很多成熟的数据分析框架:Pandas,Numpy等,这些在课程中都有教。这些框架都可以很方便的完成数据分析的任务。

对象在python里,其实是一个指针,指向一个数据结构,数据结构里有属性,有方法。 对象通常就是指变量。从面向对象OO的概念来讲,对象是类的一个实例。在python里很简单,对象就是变量。 class A: myname="class a" 上面就是一个类。

速度快:

Python 的底层是用 C 语言写的,很多标准库和第三方库也都是用 C 写的,运行速度非常快。 免费、开源:Python是FLOSS(自由/开放源码软件)之一。使用者可以自由地发布这个软件的拷贝、阅读它的源代码、对它做改动、把它的一部分用于新的自由软件中。FLOSS是基于一个团体分享知识的概念。

阅读全文

与python金融数据分析案例相关的资料

热点内容
项目经理叫醒程序员 浏览:342
autocad旋转命令 浏览:660
手机版wpsoffice怎么打包文件夹 浏览:579
在成都学车用什么app 浏览:818
grep命令管道 浏览:426
java修改重启 浏览:567
单片机供电方案 浏览:770
airpodspro一代怎么连接安卓 浏览:218
豌豆荚app上有什么游戏 浏览:283
公路商店app标签选什么 浏览:338
linuxoracle命令行登录 浏览:227
android深度休眠 浏览:172
php微信开发例子 浏览:845
医得app登录密码是什么 浏览:142
spring开发服务器地址 浏览:411
服务器上如何查看服务器的端口 浏览:678
单片机服务器编译 浏览:770
单口usb打印机服务器是什么 浏览:859
战地五开服务器要什么条件 浏览:956
在word中压缩图片大小 浏览:255