导航:首页 > 编程语言 > python爬取帖子列表数据

python爬取帖子列表数据

发布时间:2023-01-20 15:44:28

❶ 如何用python爬取数据

方法/步骤

❷ 如何利用python 爬取知乎上面的数据

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author: Administrator
# @Date: 2015-10-31 15:45:27
# @Last Modified by: Administrator
# @Last Modified time: 2015-11-23 16:57:31
import requests
import sys
import json
import re
reload(sys)
sys.setdefaultencoding('utf-8')

#获取到匹配字符的字符串
def find(pattern,test):
finder = re.search(pattern, test)
start = finder.start()
end = finder.end()
return test[start:end-1]

cookies = {
'_ga':'GA1.2.10sdfsdfsdf', '_za':'8d570b05-b0b1-4c96-a441-faddff34',
'q_c1':'23ddd234234',
'_xsrf':'234id':'"ZTE3NWY2ZTsdfsdfsdfWM2YzYxZmE=|1446435757|"',
'z_c0':'"=|14464e234767|"',
'__utmt':'1', '__utma':'51854390.109883802f8.1417518721.1447917637.144c7922009.4',
'__utmb':'518542340.4.10.1447922009', '__utmc':'51123390', '__utmz':'5185435454sdf06.1.1.utmcsr=hu.com|utmcgcn=(referral)|utmcmd=referral|utmcct=/',
'__utmv':'51854340.1d200-1|2=registration_date=2028=1^3=entry_date=201330318=1'}

headers = {'user-agent':
'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.111 Safari/537.36',
'referer':'http://www.hu.com/question/following',
'host':'www.hu.com','Origin':'http://www.hu.com',
'Content-Type':'application/x-www-form-urlencoded; charset=UTF-8',
'Connection':'keep-alive','X-Requested-With':'XMLHttpRequest','Content-Length':'81',
'Accept-Encoding':'gzip,deflate','Accept-Language':'zh-CN,zh;q=0.8','Connection':'keep-alive'
}

#多次访问之后,其实一加载时加载20个问题,具体参数传输就是offset,以20递增

dicc = {"offset":60}
n=20
b=0

# 与爬取图片相同的是,往下拉的时候也会发送http请求返回json数据,但是不同的是,像模拟登录首页不同的是除了
# 发送form表单的那些东西后,知乎是拒绝了我的请求了,刚开始以为是headers上的拦截,往headers添加浏览器
# 访问是的headers那些信息添加上,发现还是拒绝访问。

#想了一下,应该是cookie原因。这个加载的请求和模拟登录首页不同
#所以补上其他的cookies信息,再次请求,请求成功。
for x in xrange(20,460,20):
n = n+20
b = b+20
dicc['offset'] = x
formdata = {'method':'next','params':'{"offset":20}','_xsrf':''}

#传输需要json串,和python的字典是有区别的,需要转换
formdata['params'] = json.mps(dicc)
# print json.mps(dicc)
# print dicc

circle = requests.post("http://www.hu.com/node/ProfileFollowedQuestionsV2",
cookies=cookies,data=formdata,headers=headers)

#response内容 其实爬过一次之后就大同小异了。 都是
#问题返回的json串格式
# {"r":0,
# "msg": ["<div class=\"zm-profile-section-item zg-clear\">\n
# <span class=\"zm-profile-vote-count\">\n<div class=\"zm-profile-vote-num\">205K<\/div>\n
# <div class=\"zm-profile-vote-type\">\u6d4f\u89c8<\/div>\n
# <\/span>\n<div class=\"zm-profile-section-main\">\n
# <h2 class=\"zm-profile-question\">\n
# <a class=\"question_link\" target=\"_blank\" href=\"\/question\/21719532\">
# \u4ec0\u4e48\u4fc3\u4f7f\u4f60\u8d70\u4e0a\u72ec\u7acb\u5f00\u53d1\u8005\u4e4b\u8def\uff1f<\/a>\n
# <\/h2>\n<div class=\"meta zg-gray\">\n<a data-follow=\"q:link\" class=\"follow-link zg-unfollow meta-item\"
# href=\"javascript:;\" id=\"sfb-868760\">
# <i class=\"z-icon-follow\"><\/i>\u53d6\u6d88\u5173\u6ce8<\/a>\n<span class=\"zg-bull\">•<\/span>\n63 \u4e2a\u56de\u7b54\n<span class=\"zg-bull\">•<\/span>\n3589 \u4eba\u5173\u6ce8\n<\/div>\n<\/div>\n<\/div>",
# "<div class=\"zm-profile-section-item zg-clear\">\n
# <span class=\"zm-profile-vote-count\">\n
# <div class=\"zm-profile-vote-num\">157K<\/div>\n
# <div class=\"zm-profile-vote-type\">\u6d4f\u89c8<\/div>\n
# <\/span>\n<div class=\"zm-profile-section-main\">\n
# <h2 class=\"zm-profile-question\">\n
# <a class=\"question_link\" target=\"_blank\" href=\"\/question\/31764065\">
# \u672c\u79d1\u6e23\u6821\u7684\u5b66\u751f\u5982\u4f55\u8fdb\u5165\u7f8e\u5e1d\u725b\u6821\u8bfbPhD\uff1f<\/a>\n
# <\/h2>\n<div class=\"meta zg-gray\">\n
# <a data-follow=\"q:link\" class=\"follow-link zg-unfollow meta-item\" href=\"javascript:;\" id=\"sfb-4904877\">
# <i class=\"z-icon-follow\"><\/i>\u53d6\u6d88\u5173\u6ce8<\/a>\n<span class=\"zg-bull\">•
# <\/span>\n112 \u4e2a\u56de\u7b54\n<span class=\"zg-bull\">•<\/span>\n1582 \u4eba\u5173\u6ce8\n
# <\/div>\n<\/div>\n<\/div>"]}
# print circle.content

#同样json串需要自己 转换成字典后使用
jsondict = json.loads(circle.text)
msgstr = jsondict['msg']
# print len(msgstr)

#根据自己所需要的提取信息规则写出正则表达式
pattern = 'question\/.*?/a>'
try:
for y in xrange(0,20):
wholequestion = find(pattern, msgstr[y])
pattern2 = '>.*?<'
finalquestion = find(pattern2, wholequestion).replace('>','')
print str(b+y)+" "+finalquestion

#当问题已经访问完后再传参数 抛出异常 此时退出循环
except Exception, e:
print "全部%s个问题" %(b+y)
break

❸ 如何使用python爬取知乎数据并做简单分析

一、使用的技术栈:
爬虫:python27 +requests+json+bs4+time
分析工具: ELK套件
开发工具:pycharm
数据成果简单的可视化分析
1.性别分布
0 绿色代表的是男性 ^ . ^
1 代表的是女性
-1 性别不确定
可见知乎的用户男性颇多。
二、粉丝最多的top30
粉丝最多的前三十名:依次是张佳玮、李开复、黄继新等等,去知乎上查这些人,也差不多这个排名,说明爬取的数据具有一定的说服力。
三、写文章最多的top30
四、爬虫架构
爬虫架构图如下:
说明:
选择一个活跃的用户(比如李开复)的url作为入口url.并将已爬取的url存在set中。
抓取内容,并解析该用户的关注的用户的列表url,添加这些url到另一个set中,并用已爬取的url作为过滤。
解析该用户的个人信息,并存取到本地磁盘。
logstash取实时的获取本地磁盘的用户数据,并给elsticsearchkibana和elasticsearch配合,将数据转换成用户友好的可视化图形。
五、编码
爬取一个url:
解析内容:
存本地文件:
代码说明:
* 需要修改获取requests请求头的authorization。
* 需要修改你的文件存储路径。
源码下载:点击这里,记得star哦!https : // github . com/forezp/ZhihuSpiderMan六、如何获取authorization
打开chorme,打开https : // www. hu .com/,
登陆,首页随便找个用户,进入他的个人主页,F12(或鼠标右键,点检查)七、可改进的地方
可增加线程池,提高爬虫效率
存储url的时候我才用的set(),并且采用缓存策略,最多只存2000个url,防止内存不够,其实可以存在redis中。
存储爬取后的用户我说采取的是本地文件的方式,更好的方式应该是存在mongodb中。
对爬取的用户应该有一个信息的过滤,比如用户的粉丝数需要大与100或者参与话题数大于10等才存储。防止抓取了过多的僵尸用户。
八、关于ELK套件
关于elk的套件安装就不讨论了,具体见官网就行了。网站:https : // www . elastic . co/另外logstash的配置文件如下:
从爬取的用户数据可分析的地方很多,比如地域、学历、年龄等等,我就不一一列举了。另外,我觉得爬虫是一件非常有意思的事情,在这个内容消费升级的年代,如何在广阔的互联网的数据海洋中挖掘有价值的数据,是一件值得思考和需不断践行的事情。

❹ 如何用python爬取汽车之家论坛帖子的内容

你可以通过列表页抓取内页的链接,然后再通过内页链接获取内容,分两步走

❺ python爬取大量数据(百万级)

当用python爬取大量网页获取想要的数据时,最重要的问题是爬虫中断问题,python这种脚本语言,一中断

进程就会退出,怎么在中断后继续上次爬取的任务就至关重要了。这里就重点剖析这个中断问题。

第一个问题: 简单点的用动态代理池就能解决,在爬取大量数据的时候,为了速度不受影响,建议使用一些缓

存的中间件将有效的代理 ip 缓存起来,并定时更新。这里推荐 github 这个仓库

https://github.com/jhao104/proxy_pool , 它会做ip有效性验证并将 ip 放入 redis ,不过实现过于复杂

了,还用到了 db ,个人觉得最好自己修改一下。困难点的就是它会使用别的请求来进行判断当前的ip是否

是爬虫,当我们过于聚焦我们的爬虫请求而忽略了其他的请求时,可能就会被服务器判定为爬虫,进而这个ip

会被列入黑名单,而且你换了ip一样也会卡死在这里。这种方式呢,简单点就用 selenium + chrome 一个一个

去爬,不过速度太慢了。还是自己去分析吧,也不会过复杂的。

第二个问题: 网络连接超时是大概率会遇到的问题,有可能是在爬取的时候本地网络波动,也有可能是爬

取的服务端对ip做了限制,在爬取到了一定量级的时候做一些延迟的操作,使得一些通用的 http 库超时

urllib )。不过如果是服务端动的手脚一般延迟不会太高,我们只需要人为的设置一个高一点的

timeout 即可(30 秒),最好在爬取开始的时候就对我们要用的爬取库进行一层封装,通用起来才好改

动。

第三个问题: 在解析大量静态页面的时候,有些静态页面的解析规则不一样,所以我们就必须得做好断点

续爬的准备了( PS : 如果简单的忽略错误可能会导致大量数据的丢失,这就不明智了)。那么在调试的过

程中断点续爬有个解决方案,就是生产者和消费者分离,生产者就是产生待爬 url 的爬虫,消费者就是爬取

最终数据的爬虫。最终解析数据就是消费者爬虫了。他们通过消息中间件连接,生产者往消息中间件发送待

爬取的目标信息,消费者从里面取就行了,还间接的实现了个分布式爬取功能。由于现在的消费中间件都有

ack 机制,一个消费者爬取链接失败会导致消息消费失败,进而分配给其他消费者消费。所以消息丢失的

概率极低。不过这里还有个 tips , 消费者的消费超时时间不能太长,会导致消息释放不及时。还有要开启

消息中间价的数据持久化功能,不然消息产生过多而消费不及时会撑爆机器内存。那样就得不偿失了。

第四个问题: 这种情况只能 try except catch 住了,不好解决,如果单独分析的话会耗费点时间。但在

大部分数据 (99%) 都正常的情况下就这条不正常抛弃就行了。主要有了第三个问题的解决方案再出现这

种偶尔中断的问就方便多了。

希望能帮到各位。

❻ 怎么用python爬取相关数据

以下代码运行通过:

importrequests
frombs4importBeautifulSoup
importos


headers={
'User-Agent':"Mozilla/5.0(WindowsNT6.1;WOW64)AppleWebKit/537.1(KHTML,likeGecko)"
"Chrome/22.0.1207.1Safari/537.1"}
##浏览器请求头(大部分网站没有这个请求头会报错)
all_url='http://www.mzitu.com/all'
start_html=requests.get(all_url,headers=headers)
##使用requests中的get方法来获取all_url的内容headers为请求头
print(start_html.text)
##打印start_html
##concent是二进制的数据,下载图片、视频、音频、等多媒体内容时使用concent
##打印网页内容时使用text

运行效果:

❼ 如何用python爬取豆瓣读书的数据

这两天爬了豆瓣读书的十万条左右的书目信息,用时将近一天,现在趁着这个空闲把代码总结一下,还是菜鸟,都是用的最简单最笨的方法,还请路过的大神不吝赐教。
第一步,先看一下我们需要的库:

import requests #用来请求网页
from bs4 import BeautifulSoup #解析网页
import time #设置延时时间,防止爬取过于频繁被封IP号
import re #正则表达式库
import pymysql #由于爬取的数据太多,我们要把他存入MySQL数据库中,这个库用于连接数据库
import random #这个库里用到了产生随机数的randint函数,和上面的time搭配,使爬取间隔时间随机

这个是豆瓣的网址:x-sorttags-all
我们要从这里获取所有分类的标签链接,进一步去爬取里面的信息,代码先贴上来:

import requests
from bs4 import BeautifulSoup #导入库

url="httom/tag/?icn=index-nav"
wb_data=requests.get(url) #请求网址
soup=BeautifulSoup(wb_data.text,"lxml") #解析网页信息
tags=soup.select("#content > div > div.article > div > div > table > tbody > tr > td > a")
#根据CSS路径查找标签信息,CSS路径获取方法,右键-检查- selector,tags返回的是一个列表
for tag in tags:
tag=tag.get_text() #将列表中的每一个标签信息提取出来
helf="hom/tag/"
#观察一下豆瓣的网址,基本都是这部分加上标签信息,所以我们要组装网址,用于爬取标签详情页
url=helf+str(tag)
print(url) #网址组装完毕,输出

以上我们便爬取了所有标签下的网址,我们将这个文件命名为channel,并在channel中创建一个channel字符串,放上我们所有爬取的网址信息,等下爬取详情页的时候直接从这里提取链接就好了,如下:

channel='''
tag/程序
'''

现在,我们开始第二个程序。


QQ图片20160915233329.png


标签页下每一个图片的信息基本都是这样的,我们可以直接从这里提取到标题,作者,出版社,出版时间,价格,评价人数,以及评分等信息(有些外国作品还会有译者信息),提取方法与提取标签类似,也是根据CSS路径提取。
我们先用一个网址来实验爬取:

url="htt/tag/科技"
wb_data = requests.get(url)
soup = BeautifulSoup(wb_data.text.encode("utf-8"), "lxml")
tag=url.split("?")[0].split("/")[-1] #从链接里面提取标签信息,方便存储
detils=soup.select("#subject_list > ul > li > div.info > div.pub") #抓取作者,出版社信息,稍后我们用spite()函数再将他们分离出来
scors=soup.select("#subject_list > ul > li > div.info > div.star.clearfix > span.rating_nums") #抓取评分信息
persons=soup.select("#subject_list > ul > li > div.info > div.star.clearfix > span.pl") #评价人数
titles=soup.select("#subject_list > ul > li > div.info > h2 > a") #书名
#以上抓取的都是我们需要的html语言标签信息,我们还需要将他们一一分离出来
for detil,scor,person,title in zip(detils,scors,persons,titles):
#用一个zip()函数实现一次遍历
#因为一些标签中有译者信息,一些标签中没有,为避免错误,所以我们要用一个try来把他们分开执行
try:
author=detil.get_text().split("/",4)[0].split()[0] #这是含有译者信息的提取办法,根据“/” 把标签分为五部分,然后依次提取出来
yizhe= detil.get_text().split("/", 4)[1]
publish=detil.get_text().split("/", 4)[2]
time=detil.get_text().split("/", 4)[3].split()[0].split("-")[0] #时间我们只提取了出版年份
price=ceshi_priceone(detil) #因为价格的单位不统一,我们用一个函数把他们换算为“元”
scoe=scor.get_text() if True else "" #有些书目是没有评分的,为避免错误,我们把没有评分的信息设置为空
person=ceshi_person(person) #有些书目的评价人数显示少于十人,爬取过程中会出现错误,用一个函数来处理
title=title.get_text().split()[0]
#当没有译者信息时,会显示IndexError,我们分开处理
except IndexError:
try:
author=detil.get_text().split("/", 3)[0].split()[0]
yizhe="" #将detil信息划分为4部分提取,译者信息直接设置为空,其他与上面一样
publish=detil.get_text().split("/", 3)[1]
time=detil.get_text().split("/", 3)[2].split()[0].split("-")[0]
price=ceshi_pricetwo(detil)
scoe=scor.get_text() if True else ""
person=ceshi_person(person)
title=title.get_text().split()[0]
except (IndexError,TypeError):
continue
#出现其他错误信息,忽略,继续执行(有些书目信息下会没有出版社或者出版年份,但是数量很少,不影响我们大规模爬取,所以直接忽略)
except TypeError:
continue

#提取评价人数的函数,如果评价人数少于十人,按十人处理
def ceshi_person(person):
try:
person = int(person.get_text().split()[0][1:len(person.get_text().split()[0]) - 4])
except ValueError:
person = int(10)
return person

#分情况提取价格的函数,用正则表达式找到含有特殊字符的信息,并换算为“元”
def ceshi_priceone(price):
price = detil.get_text().split("/", 4)[4].split()
if re.match("USD", price[0]):
price = float(price[1]) * 6
elif re.match("CNY", price[0]):
price = price[1]
elif re.match("A$", price[0]):
price = float(price[1:len(price)]) * 6
else:
price = price[0]
return price
def ceshi_pricetwo(price):
price = detil.get_text().split("/", 3)[3].split()
if re.match("USD", price[0]):
price = float(price[1]) * 6
elif re.match("CNY", price[0]):
price = price[1]
elif re.match("A$", price[0]):
price = float(price[1:len(price)]) * 6
else:
price = price[0]
return price

实验成功后,我们就可以爬取数据并导入到数据库中了,以下为全部源码,特殊情况会用注释一一说明。

import requests
from bs4 import BeautifulSoup
import time
import re
import pymysql
from channel import channel #这是我们第一个程序爬取的链接信息
import random

def ceshi_person(person):
try:
person = int(person.get_text().split()[0][1:len(person.get_text().split()[0]) - 4])
except ValueError:
person = int(10)
return person

def ceshi_priceone(price):
price = detil.get_text().split("/", 4)[4].split()
if re.match("USD", price[0]):
price = float(price[1]) * 6
elif re.match("CNY", price[0]):
price = price[1]
elif re.match("A$", price[0]):
price = float(price[1:len(price)]) * 6
else:
price = price[0]
return price

def ceshi_pricetwo(price):
price = detil.get_text().split("/", 3)[3].split()
if re.match("USD", price[0]):
price = float(price[1]) * 6
elif re.match("CNY", price[0]):
price = price[1]
elif re.match("A$", price[0]):
price = float(price[1:len(price)]) * 6
else:
price = price[0]
return price


#这是上面的那个测试函数,我们把它放在主函数中
def mains(url):
wb_data = requests.get(url)
soup = BeautifulSoup(wb_data.text.encode("utf-8"), "lxml")
tag=url.split("?")[0].split("/")[-1]
detils=soup.select("#subject_list > ul > li > div.info > div.pub")
scors=soup.select("#subject_list > ul > li > div.info > div.star.clearfix > span.rating_nums")
persons=soup.select("#subject_list > ul > li > div.info > div.star.clearfix > span.pl")
titles=soup.select("#subject_list > ul > li > div.info > h2 > a")
for detil,scor,person,title in zip(detils,scors,persons,titles):
l = [] #建一个列表,用于存放数据
try:
author=detil.get_text().split("/",4)[0].split()[0]
yizhe= detil.get_text().split("/", 4)[1]
publish=detil.get_text().split("/", 4)[2]
time=detil.get_text().split("/", 4)[3].split()[0].split("-")[0]
price=ceshi_priceone(detil)
scoe=scor.get_text() if True else ""
person=ceshi_person(person)
title=title.get_text().split()[0]
except IndexError:
try:
author=detil.get_text().split("/", 3)[0].split()[0]
yizhe=""
publish=detil.get_text().split("/", 3)[1]
time=detil.get_text().split("/", 3)[2].split()[0].split("-")[0]
price=ceshi_pricetwo(detil)
scoe=scor.get_text() if True else ""
person=ceshi_person(person)
title=title.get_text().split()[0]
except (IndexError,TypeError):
continue

except TypeError:
continue
l.append([title,scoe,author,price,time,publish,person,yizhe,tag])
#将爬取的数据依次填入列表中


sql="INSERT INTO allbooks values(%s,%s,%s,%s,%s,%s,%s,%s,%s)" #这是一条sql插入语句
cur.executemany(sql,l) #执行sql语句,并用executemary()函数批量插入数据库中
conn.commit()

#主函数到此结束


# 将Python连接到MySQL中的python数据库中
conn = pymysql.connect( user="root",password="123123",database="python",charset='utf8')
cur = conn.cursor()

cur.execute('DROP TABLE IF EXISTS allbooks') #如果数据库中有allbooks的数据库则删除
sql = """CREATE TABLE allbooks(
title CHAR(255) NOT NULL,
scor CHAR(255),
author CHAR(255),
price CHAR(255),
time CHAR(255),
publish CHAR(255),
person CHAR(255),
yizhe CHAR(255),
tag CHAR(255)
)"""
cur.execute(sql) #执行sql语句,新建一个allbooks的数据库


start = time.clock() #设置一个时钟,这样我们就能知道我们爬取了多长时间了
for urls in channel.split():
urlss=[urls+"?start={}&type=T".format(str(i)) for i in range(0,980,20)] #从channel中提取url信息,并组装成每一页的链接
for url in urlss:
mains(url) #执行主函数,开始爬取
print(url) #输出要爬取的链接,这样我们就能知道爬到哪了,发生错误也好处理
time.sleep(int(format(random.randint(0,9)))) #设置一个随机数时间,每爬一个网页可以随机的停一段时间,防止IP被封
end = time.clock()
print('Time Usage:', end - start) #爬取结束,输出爬取时间
count = cur.execute('select * from allbooks')
print('has %s record' % count) #输出爬取的总数目条数

# 释放数据连接
if cur:
cur.close()
if conn:
conn.close()

这样,一个程序就算完成了,豆瓣的书目信息就一条条地写进了我们的数据库中,当然,在爬取的过程中,也遇到了很多问题,比如标题返回的信息拆分后中会有空格,写入数据库中会出现错误,所以只截取了标题的第一部分,因而导致数据库中的一些书名不完整,过往的大神如果有什么办法,还请指教一二。
等待爬取的过程是漫长而又欣喜的,看着电脑上一条条信息被刷出来,成就感就不知不觉涌上心头;然而如果你吃饭时它在爬,你上厕所时它在爬,你都已经爬了个山回来了它还在爬时,便会有点崩溃了,担心电脑随时都会坏掉(还是穷学生换不起啊啊啊啊~)
所以,还是要好好学学设置断点,多线程,以及正则,路漫漫其修远兮,吾将上下而求索~共勉~

❽ 怎么使用python来爬取网页上的表格信息

稍微说一下背景,当时我想研究蛋白质与小分子的复合物在空间三维结构上的一些规律,首先得有数据啊,数据从哪里来?就是从一个涵盖所有已经解析三维结构的蛋白质-小分子复合物的数据库里面下载。这时候,手动一个个去下显然是不可取的,我们需要写个脚本,能从特定的网站选择性得批量下载需要的信息。python是不错的选择。

import urllib #python中用于获取网站的模块
import urllib2, cookielib

有些网站访问时需要cookie的,python处理cookie代码如下:
cj = cookielib.CookieJar ( )
opener = urllib2.build_opener( urllib2.HttpCookieProcessor(cj) )
urllib2.install_opener (opener)

通常我们需要在网站中搜索得到我们需要的信息,这里分为二种情况:

1. 第一种,直接改变网址就可以得到你想要搜索的页面:

def GetWebPage( x ): #我们定义一个获取页面的函数,x 是用于呈递你在页面中搜索的内容的参数
url = 'http://xxxxx/xxx.cgi?&' + ‘你想要搜索的参数’ # 结合自己页面情况适当修改
page = urllib2.urlopen(url)
pageContent = page.read( )
return pageContent #返回的是HTML格式的页面信息

2.第二种,你需要用到post方法,将你搜索的内容放在postdata里面,然后返回你需要的页面

def GetWebPage( x ): #我们定义一个获取页面的函数,x 是用于呈递你在页面中搜索的内容的参数
url = 'http://xxxxx/xxx' #这个网址是你进入搜索界面的网址
postData = urllib.urlencode( { 各种‘post’参数输入 } ) #这里面的post参数输入需要自己去查
req= urllib2.Request (url, postData)
pageContent = urllib2.urlopen (req). read( )
return pageContent #返回的是HTML格式的页面信息

在获取了我们需要的网页信息之后,我们需要从获得的网页中进一步获取我们需要的信息,这里我推荐使用 BeautifulSoup 这个模块, python自带的没有,可以自行网络谷歌下载安装。 BeautifulSoup 翻译就是‘美味的汤’,你需要做的是从一锅汤里面找到你喜欢吃的东西。

import re # 正则表达式,用于匹配字符
from bs4 import BeautifulSoup # 导入BeautifulSoup 模块

soup = BeautifulSoup(pageContent) #pageContent就是上面我们搜索得到的页面

soup就是 HTML 中所有的标签(tag)BeautifulSoup处理格式化后的字符串,一个标准的tag形式为:

hwkobe24

通过一些过滤方法,我们可以从soup中获取我们需要的信息:

(1) find_all ( name , attrs , recursive , text , **kwargs)
这里面,我们通过添加对标签的约束来获取需要的标签列表, 比如 soup.find_all ('p') 就是寻找名字为‘p’的 标签,而soup.find_all (class = "tittle") 就是找到所有class属性为"tittle" 的标签,以及soup.find_all ( class = re.compile('lass')) 表示 class属性中包含‘lass’的所有标签,这里用到了正则表达式(可以自己学习一下,非常有用滴)

当我们获取了所有想要标签的列表之后,遍历这个列表,再获取标签中你需要的内容,通常我们需要标签中的文字部分,也就是网页中显示出来的文字,代码如下:

tagList = soup.find_all (class="tittle") #如果标签比较复杂,可以用多个过滤条件使过滤更加严格

for tag in tagList:
print tag.text
f.write ( str(tag.text) ) #将这些信息写入本地文件中以后使用

(2)find( name , attrs , recursive , text , **kwargs )

它与 find_all( ) 方法唯一的区别是 find_all() 方法的返回结果是值包含一个元素的列表,而 find() 方法直接返回结果

(3)find_parents( ) find_parent( )

find_all() 和 find() 只搜索当前节点的所有子节点,孙子节点等. find_parents() 和 find_parent() 用来搜索当前节点的父辈节点,搜索方法与普通tag的搜索方法相同,搜索文档搜索文档包含的内容

(4)find_next_siblings() find_next_sibling()

这2个方法通过 .next_siblings 属性对当 tag 的所有后面解析的兄弟 tag 节点进代, find_next_siblings() 方法返回所有符合条件的后面的兄弟节点,find_next_sibling() 只返回符合条件的后面的第一个tag节点

(5)find_previous_siblings() find_previous_sibling()

这2个方法通过 .previous_siblings 属性对当前 tag 的前面解析的兄弟 tag 节点进行迭代, find_previous_siblings()方法返回所有符合条件的前面的兄弟节点, find_previous_sibling() 方法返回第一个符合条件的前面的兄弟节点

(6)find_all_next() find_next()

这2个方法通过 .next_elements 属性对当前 tag 的之后的 tag 和字符串进行迭代, find_all_next() 方法返回所有符合条件的节点, find_next() 方法返回第一个符合条件的节点

(7)find_all_previous() 和 find_previous()

这2个方法通过 .previous_elements 属性对当前节点前面的 tag 和字符串进行迭代, find_all_previous() 方法返回所有符合条件的节点, find_previous()方法返回第一个符合条件的节点

具体的使用方法还有很多,用到这里你应该可以解决大部分问题了,如果要更深入了解可以参考官方的使用说明哈!

❾ python怎么爬取数据

根据你要抓取页面的源码字段来进行爬取。根据对应的源码找到你的需求数据,主要用到requests+BeautifulSoup,其中requests用于请求页面,BeautifulSoup用于解析页面。

阅读全文

与python爬取帖子列表数据相关的资料

热点内容
服务器上如何查看服务器的端口 浏览:676
单片机服务器编译 浏览:768
单口usb打印机服务器是什么 浏览:859
战地五开服务器要什么条件 浏览:954
在word中压缩图片大小 浏览:253
javatomcat图片 浏览:417
程序员生产智能创意 浏览:65
汇和银行app怎么登录 浏览:383
腾讯服务器如何上传源码 浏览:745
单片机的原理概述 浏览:512
火控pdf 浏览:267
如何复制云服务器centos环境 浏览:984
债权pdf 浏览:303
红色番字的app怎么下载 浏览:876
云服务器流程教课 浏览:704
中国农业银行app怎么没有网 浏览:999
几率表算法 浏览:904
程序员理工科 浏览:708
企业邮箱登录收件服务器地址 浏览:560
计算机思维与算法设计的重要性 浏览:664