① 数据科学与大数据技术专业课程
一、数据科学与大数据技术专业课程有哪些 C程序设计、数据结构、数据库原理与应用、计算机操作系统、计算机网络、java语言程序设计、Python语言程序设计,大数据算法、人工智能、应用统计(统计学)、大数据机器学习、数据建模、大数据平台核心技术、大数据分析与处理,大数据管理、大数据实践等课程。
二、数据科学与大数据技术专业简介
数据科学与大数据技术专业(英文名Data Science and Big Data Technology),简称数据科学或大数据,旨在培养具有大数据思维、运用大数据思维及分析应用技术的高层次大数据人才。掌握计算机理论和大数据处理技术,从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地培养学生掌握大数据应用中的各种典型问题的解决办法,实际提升学生解决实际问题的能力,具有将领域知识与计算机技术和大数据技术融合、创新的能力,能够从事大数据研究和开发应用的高层次人才。
三、数据科学与大数据技术专业就业方向和前景
毕业生能在政府机构、企业、公司等从事大数据管理、研究、应用开发等方面的工作。同时可以考取软件工程、计算机科学与技术、应用统计学等专业的研究生或出国深造。
数据科学与大数据技术专业学什么 附学习科目和课程
数据科学与大数据技术专业就业前景
数据科学与大数据技术专业学什么 附学习科目和课程
数据科学与大数据技术专业课程有哪些
数据科学与大数据技术专业就业方向
数据科学与大数据技术专业大学排名及分数线【统计表】
全国数据科学与大数据技术专业大学排名 一本二本大学名单 ;
② 数据计算及应用专业课程有哪些
《数学分析》、《高等代数》、《解析几何》、《概率论》、《数理统计》、《常微分方程》等。数据计算及应用专业是数学、统计学和信息科学多学科交叉融合的应用理科专业,主要培养能运用所学知识与技能解决数据分析、信息处理、科学与工程计算等领域实际问题的复合型应用理科专业人才。
数据计算机应用专业开设的课程主要有《数学分析》、《高等代数》、《解析几何》、《概率论》、《数理统计》、《常微分方程》、《数据科学导论》、《高级语言程序设计》、《数据库原理》、《数据结构》、《统计预测与决策》、《数据建模》、《数值最优化方法》、《数据算法与分析》、《应用时间序列分析》、《数据挖掘基础》、《统计推断》、《统计计算》、《机器学习》、《R语言与数据分析》、《Hadoop大数据分析》、《数据可视化分析》、《多元统计分析》等。
数据计算及应用专业以数学和统计学为理论基础、以科学计算和数据处理为核心技术、以处理行业应用中的数据问题为依托,培养具有良好的科学素养,扎实的数学、信息科学基础,较强的工程应用能力的专门人才;掌握数据科学的数学、统计学等思想方法,能熟练地运用数据处理技术、建模分析能力和科学计算方法解决实际应用中的数据问题;毕业生具有良好的创新意识、国际视野和良好的职业道德精神、社会责任感;能继续深造,或在政府机关、企业、金融机构、科研院所等单位从事数据计算、开发与分析、管理和教学等方面工作。
③ 互联网与大数据专业主要学习哪些科目内容
1、大数据专业需要学:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践、离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析等。
2、大数据技术旨在培养学生系统掌握数据管理和数据挖掘方法,成为具有大数据分析处理、数据仓库管理、大数据平台综合部署、大数据平台应用软件开发和数据产品可视化展示分析能力的高层次专业大数据技术人才。
基础课程有:数学分析、高等代数、数据结构、数据科学导论、普通物理数学与信息科学概论、程序设计导论、程序设计实践等。
必修课有:离散数学、概率与统计学、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析等。
选修课有:数据科学算法导论、数据科学专题、数据科学实践基础、互联网实用开发技术、抽样技术、统计学、回归分析、随机过程分析等。
从以上课程可见大数据专业是非常需要数学能力的。深层次大数据专业技能在于数据模型与算法,浅层次大数据专业在于相关技术工具和程序研发实现上!
④ 2022数据科学与大数据技术专业课程有哪些
数据科学与大数据技术专业课程主要有微观经济学、计量经济学、国际金融、搜索引擎、自然语言处理、数据可视化、机器学习。数据科学与大数据技术专业就业前景广阔,毕业生能够在计算机和互联网领域以及大数据相关产业从事数据科学研究、大数据相关工程应用开发、技术管理与咨询等工作。
分析类工程师。使用统计模型、数据挖掘、机器学习及其他方法,进行数据清洗、数据分析、构建行业数据分析模型,为客户提供有价值的信息,满足客户需求。
算法工程师。大数据方向,和专业工程师一起从系统应用的角度,利用数据挖掘/统计学习的理论和方法解决实际问题;人工智能方向,根据人工智能产品需求完成技术方案设计及算法设计和核心模块开发,组织解决项目开发过程中的重大技术问题。
架构工程师。负责Hadoop集群架构设计开发、搭建、管理、运维、调优,从数据采集到数据加工,从数据清洗到数据抽取,从数据统计到数据分析,实现大数据全产业线上的应用分析设计。
开发工程师。基于hadoop、spark等构建数据分析平台,进行设计、开发分布式计算业务,负责机器学习、深度学习领域的开发工作。
“数据科学与大数据技术”专业是近两年才设立的新专业。“数据科学与大数据技术”专业有着很好的就业前景并且就业的宽度广,就业薪资待遇水平高,缺点可能在于专业设立较新,教学课程设置上可能无法跟上大数据人才培养的技能需求。以数据中国“百校工程”产教融合创新项目为例,在课程的设置上校企共建专业人才培养方案,对接培养大数据技能型人才,在大数据与人工智能领域设立了以下的人才培养方向。
⑤ 数据科学与大数据技术的专业课程有哪些
数据科学与大数据技术专业课程有离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析等。
⑥ 大数据专业课程有哪些
首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。基础
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
记住学到这里可以作为你学大数据的一个节点。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
⑦ 大数据开发工程师要学习哪些课程
1.大数据工程师工作中会做什么?
集群运维:安装、测试、运维各种大数据组件
数据开发:细分一点的话会有ETL工程师、数据仓库工程师等
数据系统开发:偏重Web系统开发,比如报表系统、推荐系统等
这里面有很多内容其实是十分重合的,下面大致聊一下每一块内容大致需要学什么,以及侧重点。
2.集群运维
数据工程师,基本上是离不开集群搭建,比如hadoop、Spark、Kafka,不要指望有专门的运维帮你搞定,新组件的引入一般都要自己来动手的。
因此这就要求数据工程师了解各种大数据的组件。
由于要自己的安装各种开源的组件,就要求数据工程师要具备的能力: Linux 。要对Linux比较熟悉,能各种自己折腾着玩。
由于现在的大数据生态系统基本上是 JVM系的,因此在语言上,就不要犹豫了,JVM系的Java和Scala基本上跑不掉,Java基本上要学的很深,Scala就看情况了。
3. ETL
ETL在大数据领域主要体现在各种数据流的处理。这一块一方面体现在对一些组件的了解上,比如Sqoop、Flume、Kafka、Spark、MapRece;另一方面就是编程语言的需要,Java、Shell和Sql是基本功。
4.系统开发
我们大部分的价值最后都会由系统来体现,比如报表系统和推荐系统。因此就要求有一定的系统开发能力,最常用的就是 Java Web这一套了,当然Python也是挺方便的。
需要注意的是,一般数据开发跑不掉的就是各种提数据的需求,很多是临时和定制的需求,这种情况下, Sql就跑不掉了,老老实实学一下Sql很必要。
如何入门?
前面提到了一些数据工程师会用到的技能树,下面给一个入门的建议,完全个人意见。
1.了解行业情况
刚开始一定要了解清楚自己和行业的情况,很多人根本就分不清招聘信息中的大数据和数据挖掘的区别就说自己要转行,其实是很不负责的。不要总是赶热点,反正我就是经常被鄙视做什么大数据开发太Low,做数据就要做数据挖掘,不然永远都是水货。
2.选择学习途径
如果真是清楚自己明确地想转数据开发了,要考虑一下自己的时间和精力,能拿出来多少时间,而且在学习的时候最好有人能多指点下,不然太容易走弯路了。
在选择具体的学习途径时,要慎重一点,有几个选择:
自学
报班
找人指点
别的不说了,报班是可以考虑的,不要全指望报个辅导班就能带你上天,但是可以靠他帮你梳理思路。如果有专业从事这一行的人多帮帮的话,是最好的。不一定是技术好,主要是可沟通性强。
3.学习路线
学习路线,下面是一个大致的建议:
第一阶段
先具备一定的Linux和Java的基础,不一定要特别深,先能玩起来,Linux的话能自己执行各种操作,Java能写点小程序。这些事为搭建Hadoop环境做准备。
学习Hadoop,学会搭建单机版的Hadoop,然后是分布式的Hadoop,写一些MR的程序。
接着学学Hadoop生态系统的其它大数据组件,比如Spark、Hive、Hbase,尝试去搭建然后跑一些官网的Demo。
Linux、Java、各种组件都有一些基础后,要有一些项目方面的实践,这时候找一些成功案例,比如搜搜各种视频教程中如何搞一个推荐系统,把自己学到的用起来。
第二阶段
到这里是一个基本的阶段了,大致对数据开发有一些了解了。接着要有一些有意思内容可以选学。
数据仓库体系:如何搞数据分层,数据仓库体系该如何建设,可以有一些大致的了解。
用户画像和特征工程:这一部分越早了解越好。
一些系统的实现思路:比如调度系统、元数据系统、推荐系统这些系统如何实现。
第三阶段
下面要有一些细分的领域需要深入进行,看工作和兴趣来选择一些来深入进行
分布式理论:比如Gossip、DHT、Paxo这些构成了各种分布式系统的底层协议和算法,还是要学一下的。
数据挖掘算法:算法是要学的,但是不一定纯理论,在分布式环境中实现算法,本身就是一个大的挑战。
各种系统的源码学习:比如Hadoop、Spark、Kafka的源码,想深入搞大数据,源码跑不掉。