‘壹’ python怎么用线性回归拟合
from sklearn import linear_model#线性回归clf = linear_model.LinearRegression()#训练clf.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])#表达式参数clf.coef_#测试improt numpy as npx = np.array([1,1])y = x.dot(clf.coef_)
‘贰’ 如何用Python进行线性回归以及误差分析
如何用Python进行线性回归以及误差分析
如果你想要重命名,只需要按下:
CTRL-b
状态条将会改变,这时你将可以重命名当前的窗口
一旦在一个会话中创建多个窗口,我们需要在这些窗口间移动的办法。窗口像数组一样组织在一起,从0开始用数字标记每个窗口,想要快速跳转到其余窗口:
CTRL-b 《窗口号》
如果我们给窗口起了名字,我们可以使用下面的命令找到它们:
CTRL-b f
也可以列出所有窗口:
CTRL-b w
‘叁’ 如何用python作空间自回归模型
基本形式
线性模型(linear model)就是试图通过属性的线性组合来进行预测的函数,基本形式如下:
f(x)=wTx+b
许多非线性模型可在线性模型的基础上通过引入层结构或者高维映射(比如核方法)来解决。线性模型有很好的解释性。
线性回归
线性回归要求均方误差最小:
(w∗,b∗)=argmin∑i=1m(f(xi)−yi)2
均方误差有很好的几何意义,它对应了常用的欧式距离(Euclidean distance)。基于均方误差最小化来进行模型求解称为最小二乘法(least square method),线性回归中,最小二乘发就是试图找到一条直线,使得所有样本到直线的欧式距离之和最小。
我们把上式写成矩阵的形式:
w∗=argmin(y−Xw)T(y−Xw)
这里我们把b融合到w中,X中最后再加一列1。为了求最小值,我们对w求导并令其为0:
2XT(Xw−y)=0
当XTX为满秩矩阵(full-rank matrix)时是可逆的。此时:
w=(XTX)−1XTy
令xi=(xi,1),可以得到线性回归模型:
f(xi)=xTi(XTX)−1XTy
‘肆’ 如何用Python进行线性回归以及误差分析
数据挖掘中的预测问题通常分为2类:回归与分类。
简单的说回归就是预测数值,而分类是给数据打上标签归类。
本文讲述如何用Python进行基本的数据拟合,以及如何对拟合结果的误差进行分析。
本例中使用一个2次函数加上随机的扰动来生成500个点,然后尝试用1、2、100次方的多项式对该数据进行拟合。
拟合的目的是使得根据训练数据能够拟合出一个多项式函数,这个函数能够很好的拟合现有数据,并且能对未知的数据进行预测。
代码如下:
importmatplotlib.pyplot as plt
importnumpy as np
importscipy as sp
fromscipy.statsimportnorm
fromsklearn.pipelineimportPipeline
fromsklearn.linear_modelimportLinearRegression
fromsklearn.
fromsklearnimportlinear_model
''''' 数据生成 '''
x = np.arange(0,1,0.002)
y = norm.rvs(0, size=500, scale=0.1)
y = y + x**2
''''' 均方误差根 '''
defrmse(y_test, y):
returnsp.sqrt(sp.mean((y_test - y) **2))
''''' 与均值相比的优秀程度,介于[0~1]。0表示不如均值。1表示完美预测.这个版本的实现是参考scikit-learn官网文档 '''
defR2(y_test, y_true):
return1- ((y_test - y_true)**2).sum() / ((y_true - y_true.mean())**2).sum()
''''' 这是Conway&White《机器学习使用案例解析》里的版本 '''
defR22(y_test, y_true):
y_mean = np.array(y_true)
y_mean[:] = y_mean.mean()
return1- rmse(y_test, y_true) / rmse(y_mean, y_true)
plt.scatter(x, y, s=5)
degree = [1,2,100]
y_test = []
y_test = np.array(y_test)
fordindegree:
clf = Pipeline([('poly', PolynomialFeatures(degree=d)),
('linear', LinearRegression(fit_intercept=False))])
clf.fit(x[:, np.newaxis], y)
y_test = clf.predict(x[:, np.newaxis])
print(clf.named_steps['linear'].coef_)
print('rmse=%.2f, R2=%.2f, R22=%.2f, clf.score=%.2f'%
(rmse(y_test, y),
R2(y_test, y),
R22(y_test, y),
clf.score(x[:, np.newaxis], y)))
plt.plot(x, y_test, linewidth=2)
plt.grid()
plt.legend(['1','2','100'], loc='upper left')
plt.show()
该程序运行的显示结果如下:
[ 0. 0.75873781]
rmse=0.15, R2=0.78, R22=0.53, clf.score=0.78
[ 0. 0.35936882 0.52392172]
rmse=0.11, R2=0.87, R22=0.64, clf.score=0.87
[ 0.00000000e+00 2.63903249e-01 3.14973328e-01 2.43389461e-01
1.67075328e-01 1.10674280e-01 7.30672237e-02 4.88605804e-02
......
3.70018540e-11 2.93631291e-11 2.32992690e-11 1.84860002e-11
1.46657377e-11]
rmse=0.10, R2=0.90, R22=0.68, clf.score=0.90
‘伍’ 如何用python实现含有虚拟自变量的回归
参考资料:
DataRobot | Ordinary Least Squares in Python
DataRoboe | Multiple Regression using Statsmodels
AnalyticsVidhya | 7 Types of Regression Techniques you should know!
‘陆’ 关于python简单线性回归
线性回归:
设x,y分别为一组数据,代码如下
import matplotlib.pyplot as plt
import numpy as np
ro=np.polyfit(x,y,deg=1) #deg为拟合的多项式的次数(线性回归就选1)
ry=np.polyval(ro,x) #忘记x和ro哪个在前哪个在后了。。。
print ro #输出的第一个数是斜率k,第二个数是纵截距b
plt.scatter(x,y)
plt.plot(x,ry)