❶ python数据分析 | 数据描述性分析
首先导入一些必要的数据处理包和可视化的包,读文档数据并通过前几行查看数据字段。
对于我的数据来说,由于数据量比较大,因此对于缺失值可以直接做删除处理。
得到最终的数据,并提取需要的列作为特征。
对类别数据进行统计:
类别型字段包括location、cpc_class、pa_country、pa_state、pa_city、assignee六个字段,其中:
单变量统计描述是数据分析中最简单的形式,其中被分析的数据只包含一个变量,不处理原因或关系。单变量分析的主要目的是通过对数据的统计描述了解当前数据的基本情况,并找出数据的分布模型。
单变量数据统计描述从集中趋势上看,指标有:均值,中位数,分位数,众数;从离散程度上看,指标有:极差、四分位数、方差、标准差、协方差、变异系数,从分布上看,有偏度,峰度等。需要考虑的还有极大值,极小值(数值型变量)和频数,构成比(分类或等级变量)。
对于数值型数据,首先希望了解一下数据取值范围的分布,因此可以用统计图直观展示数据分布特征,如:柱状图、正方图、箱式图、频率多边形和饼状图。
按照发布的时间先后作为横坐标,数值范围的分布情况如图所示.
还可以根据最终分类的结果查看这些数值数据在不同类别上的分布统计。
箱线图可以更直观的查看异常值的分布情况。
异常值指数据中的离群点,此处定义超出上下四分位数差值的1.5倍的范围为异常值,查看异常值的位置。
参考:
python数据分析之数据分布 - yancheng111 - 博客园
python数据统计分析 -
科尔莫戈罗夫检验(Kolmogorov-Smirnov test),检验样本数据是否服从某一分布,仅适用于连续分布的检验。下例中用它检验正态分布。
在使用k-s检验该数据是否服从正态分布,提出假设:x从正态分布。最终返回的结果,p-value=0.9260909172362317,比指定的显着水平(一般为5%)大,则我们不能拒绝假设:x服从正态分布。这并不是说x服从正态分布一定是正确的,而是说没有充分的证据证明x不服从正态分布。因此我们的假设被接受,认为x服从正态分布。如果p-value小于我们指定的显着性水平,则我们可以肯定的拒绝提出的假设,认为x肯定不服从正态分布,这个拒绝是绝对正确的。
衡量两个变量的相关性至少有以下三个方法:
皮尔森相关系数(Pearson correlation coefficient) 是反应俩变量之间线性相关程度的统计量,用它来分析正态分布的两个连续型变量之间的相关性。常用于分析自变量之间,以及自变量和因变量之间的相关性。
返回结果的第一个值为相关系数表示线性相关程度,其取值范围在[-1,1],绝对值越接近1,说明两个变量的相关性越强,绝对值越接近0说明两个变量的相关性越差。当两个变量完全不相关时相关系数为0。第二个值为p-value,统计学上,一般当p-value<0.05时,可以认为两变量存在相关性。
斯皮尔曼等级相关系数(Spearman’s correlation coefficient for ranked data ) ,它主要用于评价顺序变量间的线性相关关系,在计算过程中,只考虑变量值的顺序(rank, 秩或称等级),而不考虑变量值的大小。常用于计算类型变量的相关性。
返回结果的第一个值为相关系数表示线性相关程度,本例中correlation趋近于1表示正相关。第二个值为p-value,p-value越小,表示相关程度越显着。
kendall :
也可以直接对整体数据进行相关性分析,一般来说,相关系数取值和相关强度的关系是:0.8-1.0 极强 0.6-0.8 强 0.4-0.6 中等 0.2-0.4 弱 0.0-0.2 极弱。
❷ python是解释型吗
是的,Python属于解释型语言。
Python是一种跨平台的计算机程序设计语言。
是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。
❸ 为什么要使用Python进行数据分析
我使用python这门语言也有三年了,被其简洁、易读、强大的库所折服,我已经深深爱上了python。其pythonic语言特性,对人极其友好,可以说,一个完全不懂编程语言的人,看懂python语言也不是难事。
在数据分析和交互、探索性计算以及数据可视化等方面,相对于R、MATLAB、SAS、Stata等工具,Python都有其优势。近年来,由于Python库的不断发展(如pandas),使其在数据挖掘领域崭露头角。结合其在通用编程方面的强大实力,我们完全可以只使用Python这一种语言去构建以数据为中心的应用程序。
由于python是一种解释性语言,大部分编译型语言都要比python代码运行速度快,有些同学就因此鄙视python。但是小编认为,python是一门高级语言,其生产效率更高,程序员的时间通常比CPU的时间值钱,因此为了权衡利弊,考虑用python是值得的。
Python强大的计算能力依赖于其丰富而强大的库:
Numpy
Numerical Python的简称,是Python科学计算的基础包。其功能:
1. 快速高效的多维数组对象ndarray。
2. 用于对数组执行元素级计算以及直接对数组执行数学运算的函数。
3. 线性代数运算、傅里叶变换,以及随机数生成。
4. 用于将C、C++、Fortran代码集成到Python的工具。
除了为Python提供快速的数组处理能力,NumPy在数据分析方面还有另外一个主要作用,即作为在算法之间传递数据的容器。对于数值型数据,NumPy数组在存储和处理数据时要比内置的Python数据结构高效得多。此外,由低级语言(比如C和Fortran)编写的库可以直接操作NumPy数组中的数据,无需进行任何数据复制工作。
SciPy
是一组专门解决科学计算中各种标准问题域的包的集合,主要包括下面这些包:
1. scipy.integrate:数值积分例程和微分方程求解器。
2. scipy.linalg:扩展了由numpy.linalg提供的线性代数例程和矩阵分解功能。
3. scipy.optimize:函数优化器(最小化器)以及根查找算法。
4. scipy.signal:信号处理工具。
5. scipy.sparse:稀疏矩阵和稀疏线性系统求解器。
6. scipy.special:SPECFUN(这是一个实现了许多常用数学函数(如伽玛函数)的Fortran库)的包装器。
7. scipy.stats:标准连续和离散概率分布(如密度函数、采样器、连续分布函数等)、各种统计检验方法,以及更好的描述统计法。
8. scipy.weave:利用内联C++代码加速数组计算的工具。
注:NumPy跟SciPy的有机结合完全可以替代MATLAB的计算功能(包括其插件工具箱)。
SymPy
是python的数学符号计算库,用它可以进行数学表达式的符号推导和演算。
pandas
提供了使我们能够快速便捷地处理结构化数据的大量数据结构和函数。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。
pandas兼具NumPy高性能的数组计算功能以及电子表格和关系型数据库(如SQL)灵活的数据处理功能。它提供了复杂精细的索引功能,以便更为便捷地完成重塑、切片和切块、聚合以及选取数据子集等操作。
对于使用R语言进行统计计算的用户,肯定不会对DataFrame这个名字感到陌生,因为它源自于R的data.frame对象。但是这两个对象并不相同。R的data.frame对象所提供的功能只是DataFrame对象所提供的功能的一个子集。也就是说pandas的DataFrame功能比R的data.frame功能更强大。
matplotlib
是最流行的用于绘制数据图表的Python库。它最初由John D. Hunter(JDH)创建,目前由一个庞大的开发人员团队维护。它非常适合创建出版物上用的图表。它跟IPython(马上就会讲到)结合得很好,因而提供了一种非常好用的交互式数据绘图环境。绘制的图表也是交互式的,你可以利用绘图窗口中的工具栏放大图表中的某个区域或对整个图表进行平移浏览。
TVTK
是python数据三维可视化库,是一套功能十分强大的三维数据可视化库,它提供了Python风格的API,并支持Trait属性(由于Python是动态编程语言,其变量没有类型,这种灵活性有助于快速开发,但是也有缺点。而Trait库可以为对象的属性添加检校功能,从而提高程序的可读性,降低出错率。) 和NumPy数组。此库非常庞大,因此开发公司提供了一个查询文档,用户可以通过下面语句运行它:
>>> from enthought.tvtk.toolsimport tvtk_doc
>>> tvtk_doc.main()
Scikit-Learn
是基于python的机器学习库,建立在NumPy、SciPy和matplotlib基础上,操作简单、高效的数据挖掘和数据分析。其文档、实例都比较齐全。
小编建议:初学者使用python(x, y),其是一个免费的科学和工程开发包,提供数学计算、数据分析和可视化展示。非常方便!
❹ python的语言特点有哪些
python语言的特点主要有速度快、免费、可移植性、解释性、可扩展性等,具体如下:
1、速度快:Python的底层是用C语言写的很多标准库和第三方库也都是用C写的运行速度非常快。
2、免费:使用者可以自由地发布这个软件的拷贝、阅读源代码、做改动、把一部分用于新的自由软件中。
3、可移植性:由于其具有开源本质,Python已经被移植在许多平台上,这些平台包括linux、Windows FreeBSDMacintosh等。
4、解释性:Python语言写的程序不需要编译成二进制代码可以直接从源代码运行程序。
5、可扩展性:Python本身被设计为可扩充的并非所有的特性和功能都集成到语言核心。 Python提供了丰富的API和工具以便程序员能够轻松地使用C语言、C++Cython来编写扩充模块。达内教育开设Python人工智能与数据分析实战课,因材施教课程设计 满足不同人员学习需求,OMO线上线下同步教学,因材施教分级教学。
想了解更多有关python语言的详情,推荐咨询达内教育。达内教育具有丰厚的师资力量,优秀的教学体系,教学质量突出,实战讲师,经验丰富,理论知识+学习思维+实战操作,打造完整学习闭环。达内教育独创TTS8.0教学系统,并设有企业双选会。达内的OMO教学模式,全新升级,线上线下交互学习,直播学,随时学,随时问,反复学,让学员学习更便捷。感兴趣的话点击此处,免费学习一下
❺ Python具体指什么,可以运用在哪些方面呢
你好,主要运用在这些方面:
一、人工智能,包括数据分析、计算机视觉、自然语言处理等等
现在python已经基本成了人工智能的标准语言了,一般都是C/C++写个底层运算库,然后用python做脚本。各种框架层出不穷,tensorflow/pytorch等等。
二、web开发
python光是web开发的框架至少得有几十个吧,而且用的人都很多,从后端到前端各种配套服务都非常齐全。
三、爬虫
我估计很多人学爬虫就是从python入手的
四、各类App的内置脚本
有很多程序里面的内置脚本就是python,比如sublime text、blender3d,所以从这个角度来看啊,python能干的事情就无限多了,文本编辑、3d建模、股票投资等等,只有你想不到的,没有做不到的。
至于python能否开发qq、浏览器这种应用软件?
只用python是不太行的,因为python是解释性的,如何打包成二进制文件其实挺麻烦的,而且速度肯定比不上c++什么的,但是作为脚本还是不错的。
❻ python特点和优点
python作为一门高级编程语言,它的诞生虽然很偶然,但是它得到程序员的喜爱却是必然之路,Python入门简单,相比于其他语言,初学者很容易入门。除此之外,Python还具有以下优点:
1. 简单:Python奉行简洁主义,易于读写,它使你能够专注于解决问题而不是去搞明白语言本身。
2. 免费:Python是开源软件。这意味着你不用花一分钱便能复制、阅读、改动它,这也是Python越来越优秀的原因——它是由一群希望看到一个更加优秀的Python的人创造并经常改进着的。
3. 兼容性:Python兼容众多平台,所以开发者不会遇到使用其他语言时常会遇到的困扰。
4. 面向对象:Python既支持面向过程,也支持面向对象编程。在面向过程编程中,程序员复用代码,在面向对象编程中,使用基于数据和函数的对象。
5. 丰富的库:Python标准库确实很庞大。它可以帮助你处理各种工作,包括正则表达式、文档生成、单元测试、线程、数据库、网页浏览器、CGI、FTP、电子邮件、XML、XML-RPC、HTML、WAV文件、密码系统、GUI(图形用户界面)、Tk和其他与系统有关的操作。
6. 规范的代码:Python采用强制缩进的方式使得代码具有极佳的可读性。
7. 可扩展性和可嵌入性。如果你需要你的一段关键代码运行得更快或者希望某些算法不公开,你可以把你的部分程序用C或C++编写,然后在你的Python程序中使用它们。你可以把Python嵌入你的C/C++程序,从而向你的程序用户提供脚本功能。
❼ Python的特点有哪些特点
Python是一种计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越来越多被用于独立的、大型项目的开发。
Python的特点如下:
1、简单
Python是一种代表简单主义思想的语言。阅读一个良好的Python程序就感觉像是在读英语一样。它使你能够专注于解决问题而不是去搞明白语言本身。
2、易学
Python极其容易上手,因为Python有极其简单的说明文档 。
3、速度快
Python 的底层是用 C 语言写的,很多标准库和第三方库也都是用 C 写的,运行速度非常快。
4、免费、开源
Python是FLOSS(自由/开放源码软件)之一。使用者可以自由地发布这个软件的拷贝、阅读它的源代码、对它做改动、把它的一部分用于新的自由软件中。FLOSS是基于一个团体分享知识的概念。
5、高层语言
用Python语言编写程序的时候无需考虑诸如如何管理你的程序使用的内存一类的底层细节。
6、可移植性
由于它的开源本质,Python已经被移植在许多平台上(经过改动使它能够工作在不同平台上)。这些平台包括Linux、Windows、FreeBSD、Macintosh、Solaris、OS/2、Amiga、AROS、AS/400、BeOS、OS/390、z/OS、Palm OS、QNX、VMS、Psion、Acom RISC OS、VxWorks、PlayStation、Sharp Zaurus、Windows CE、PocketPC、Symbian以及Google基于linux开发的android平台。
7、解释性
一个用编译性语言比如C或C++写的程序可以从源文件(即C或C++语言)转换到一个你的计算机使用的语言(二进制代码,即0和1)。这个过程通过编译器和不同的标记、选项完成。
运行程序的时候,连接/转载器软件把你的程序从硬盘复制到内存中并且运行。而Python语言写的程序不需要编译成二进制代码。你可以直接从源代码运行 程序。
在计算机内部,Python解释器把源代码转换成称为字节码的中间形式,然后再把它翻译成计算机使用的机器语言并运行。这使得使用Python更加简单。也使得Python程序更加易于移植。
8、面向对象
Python既支持面向过程的编程也支持面向对象的编程。在“面向过程”的语言中,程序是由过程或仅仅是可重用代码的函数构建起来的。在“面向对象”的语言中,程序是由数据和功能组合而成的对象构建起来的。
9可扩展性
如果需要一段关键代码运行得更快或者希望某些算法不公开,可以部分程序用C或C++编写,然后在Python程序中使用它们。
10、可嵌入性
可以把Python嵌入C/C++程序,从而向程序用户提供脚本功能。
11、丰富的库
Python标准库确实很庞大。它可以帮助处理各种工作,包括正则表达式、文档生成、单元测试、线程、数据库、网页浏览器、CGI、FTP、电子邮件、XML、XML-RPC、HTML、WAV文件、密码系统、GUI(图形用户界面)、Tk和其他与系统有关的操作。这被称作Python的“功能齐全”理念。除了标准库以外,还有许多其他高质量的库,如wxPython、Twisted和Python图像库等等。
12、规范的代码
Python采用强制缩进的方式使得代码具有较好可读性。而Python语言写的程序不需要编译成二进制代码。