① python可以弄动态的三维图形吗
可以的。
可以采用图形库,例如:matplotlib等,按照说明或是参照样例程序修改并配置好参数即可。
② 使用Matplotlib模拟Python中的三维太阳系
编程的一个用途是通过模拟来帮助我们理解真实世界。这一技术被应用于科学、金融和许多其他定量领域。只要控制现实世界属性的“规则”是已知的,你就可以编写一个计算机程序来 探索 你遵循这些规则所得到的结果。在本文中,您将 用Python模拟三维太阳系 使用流行的可视化库Matplotlib
在这篇文章,你将能够用Python创建你自己的3D太阳系,你可以用你想要的多少太阳和行星。下面是一个简单的太阳系的一个例子,它有一个太阳和两个行星:
你还可以打开动画地板上的二维投影,更好地展示太阳系的三维本质。下面是同样的太阳系模拟,包括2D投影:
下面是这篇文章的概要,以便您知道接下来会发生什么:
在本文中,您将使用面向对象的编程和Matplotlib。如果您希望阅读更多关于任何一个主题的内容,您可以阅读:
让我们从使用Matplotlib在Python中模拟一个3D太阳系开始。
太阳系中的太阳、行星和其他天体都是运动中的天体,它们相互吸引。引力在任何两个物体之间施加。
如果这两个对象有大量M_1和M_2是距离r然后,你可以用以下公式计算它们之间的引力:
常数G是一个引力常数。您将看到如何在模拟的版本中忽略这个常量,在本文中,您将使用任意单位的质量和距离,而不是kg和m。
一旦你知道了两个物体之间的引力,你就可以计算出加速度。a每个物体都是由于这种引力而经历的,使用以下公式:
使用这个加速度,你可以调整运动物体的速度。当速度发生变化时,速度和方向都会发生变化。
当用Python模拟一个三维太阳系时,你需要用三维空间来表示太阳系。因此,这个3D空间中的每个点都可以用三个数字来表示, x -, y -和 z -坐标。例如,如果你想把太阳放在太阳系的中心,你可以将太阳的位置表示为 (0, 0, 0) .
您还需要在3D空间中表示向量。矢量具有大小和方向。你需要像速度、加速度和力这样的量的矢量,因为这些量都有一个方向和一个震级。
在本文中,我将不详细讨论向量代数。相反,我将陈述您需要的任何结果。你可以读到更多关于向量与向量代数如果你愿意的话。
为了在代码中更容易地处理向量,您可以创建一个类来处理它们。编写这个类将作为对类和面向对象编程的快速刷新。你可以读到用Python进行面向对象的编程如果你觉得你需要一个更彻底的解释。虽然您也可以创建一个类来处理3D空间中的点,但这并不是必要的,在本文中我也不会创建一个类。
如果您熟悉向量和面向对象编程,可以跳过本节,只需在定义 Vector 班级。
创建一个名为 vectors.py 中,您将定义 Vector 班级。您将使用此脚本定义类并对其进行测试。然后,可以删除最后的测试代码,只需在这个脚本中保留类定义:
这个 __init__() 方法的 Vector 类有三个参数,表示每个轴上的值。每个参数的默认值为 0 表示该轴的原点。虽然我们不喜欢在Python中使用单个字母名称, x , y ,和 z 是恰当的,因为它们代表了数学中常用的笛卡尔坐标系的术语。
您还定义了两个Dunder方法来将对象表示为一个字符串:
在代码段的末尾,您可以更多地了解这两种类型的字符串表示之间的差异。Python编码书第9章 .
测试代码块的输出如下:
在Python项目中的这个3D太阳系中,如果 Vector 类是可索引的,以便您可以使用 [] 带有索引以提取其中一个值的符号。使用当前形式的类,如果添加 print(test[0]) 在您的脚本中,您将得到一个 TypeError 说 Vector 对象不可订阅。您可以通过向类定义中添加另一个Dud方法来修复这个问题:
通过定义 __getitem__() ,你做了 Vector 可索引的类。向量中的第一项是 x 的价值。 y 的价值。 z 。任何其他索引都会引发错误。测试代码块的输出如下:
test[0] 返回向量中的第一个项, x .
可以定义类的对象的加法和减法。 __add__() 和 __sub__() DunderMethod.这些方法将使您能够使用 + 和 - 执行这些操作的符号。如果没有这些Dud方法,则使用 + 和 - 提出 TypeError .
若要添加或减去两个向量,可以分别添加或减去向量的每个元素:
双管齐下 __add__() 和 __sub__() 返回另一个 Vector 对象,每个元素等于两个原始向量中相应元素的加减。输出如下:
对于乘法和除法,您也可以这样做,尽管在处理向量时,这些操作需要更多的注意。
在处理向量时,不能仅仅引用“乘法”,因为有不同类型的“乘法”。在这个项目中,你只需要标量乘法。标量乘法是指向量与标量相乘(标量有一个数量级,但没有方向)。但是,在本小节中,您还将定义点积两个向量。你想用 * 运算符,既适用于标量乘法,也适用于点积。因此,可以定义 __mul__() DunderMethod:
使用 * 运算符将取决于第二个操作数,即 * 符号,是标量或向量。如果由参数表示的第二个操作数 other ,是类型的 Vector ,计算了点积。但是,如果 other 是类型的 int 或 float ,返回的结果是一个新的 Vector ,按比例调整。
以上代码的输出如下:
如果您想要标量乘法,则需要标量乘法。 后 这个 * 象征。如果您试图运行该语句 3*Vector(3, 5, 9) 相反, TypeError 将被提高,因为 Vector 类不是用于使用的有效操作数。 * 带有类型的对象 int .
两个向量是分不开的。但是,可以将向量除以标量。您可以使用 / 运算符 Vector 如果定义 __truep__() DunderMethod:
产出如下:
如果你有一个向量(x,y,z),您可以找到它的震级使用表达式(x^2+y^2+z^2)。你也可以规范化向量。归一化给出一个方向相同但大小为 1 。您可以通过将向量的每个元素除以矢量的大小来计算归一化向量。
可以定义两个新方法来完成 Vector 班级:
测试代码提供了以下输出:
第三个输出给出了归一化向量的大小,表明它的大小是 1 .
根据使用的IDE或其他工具,在分割时可能会收到警告 self.x , self.y ,和 self.z ,如在 __truep__() 和 normalize() 。您不需要担心这个问题,但是如果您想要修复它,可以通过更改 __init__() 签署下列任何一项:
或
这两个选项都让IDE知道参数应该是浮动的。在第二个选项中,您使用类型暗示来实现。
您现在可以删除此脚本末尾的测试代码,以便您在 vectors.py 是类的定义。
现在,你可以开始研究Python中的3D太阳系了。您将创建两个主要类:
你将使用Matplotlib来创建和可视化太阳系。您可以在终端中使用以下内容来安装Matplotlib:
或
这个 Axes3D Matplotlib中的物体将“托管”太阳系。如果您使用过Matplotlib,并且主要使用了2D绘图,那么您将使用(有意或不知情的) Axes 对象。 Axes3D 的3D等效 Axes ,顾名思义!
现在是开始编写和测试这些类的时候了。您可以创建两个新文件:
接下来,您将开始处理 SolarSystem 班级。
您将在整个项目中使用任意单元。这意味着,与其用米作为距离,而用公斤作为质量,你将使用没有单位的数量。参数 size 用于定义包含太阳系的立方体的大小:
定义 SolarSystem 类的 __init__() 方法,其中包含参数。 size 。您还定义了 bodies 属性。这个属性是一个空列表,当你稍后创建它们时,它将包含太阳系内的所有天体。这个 add_body() 方法可以用来将轨道天体添加到太阳系中。
下一步是介绍Matplotlib。属性创建图形和一组轴。 subplots() 在 matplotlib.pyplot :
你打电话 plt.subplots() ,它返回一个图形和一组轴。返回的值分配给属性。 fig 和 ax 。你打电话 plt.subplots() 有以下论点:
您还可以调用该方法。 tight_layout() 。这是 Figure 类在Matplotlib中。此方法减少了图形边缘的边距。
到目前为止,您可以在控制台/REPL中尝试代码:
这给出了一组空的三维轴的图形:
您将使用 size 参数设置此多维数据集的大小。你会回到 SolarSystem 稍后上课。目前,您可以将您的注意力转向定义 SolarSystemBody 班级。
您可以开始创建 SolarSystemBody 类及其 __init__() 方法。我正在截断 SolarSystem 下面代码中的类定义用于显示。在此代码块和以后的代码块中,包含 # ... 指出您之前编写的未显示的代码:
中的参数。 __init__() 方法是:
你也叫 add_body() 方法中定义的 SolarSystem 类将这个天体添加到太阳系中。稍后,您将向 __init__() 方法。
中定义另一个方法。 SolarSystemBody 用其当前的位置和速度移动物体:
这个 move() 方法重新定义 position 属性的 velocity 属性。我们已经讨论过你是如何用任意单位来计算距离和质量的。你也在使用任意的时间单位。每个‘时间单位’将是循环的一个迭代,您将使用它来运行模拟。因此, move() 将身体按一次迭代所需的数量移动,这是一个时间单位。
你们已经创建了Matplotlib结构,它将容纳太阳系及其所有天体。现在,您可以添加一个 draw() 方法 SolarSystemBody 若要在Matplotlib图上显示主体,请执行以下操作。您可以通过绘制一个标记来完成这一任务。
在这样做之前,您需要在 SolarSystemBody 若要控制将绘制的标记的颜色和大小以表示身体,请执行以下操作:
类属性 min_display_size 和 display_log_base 设置参数,以确定您将在3D图上显示的标记的大小。您设置了一个最小的大小,以便您显示的标记不太小,即使对于小的身体也是如此。您将使用对数标度将质量转换为标记大小,并将此对数的基值设置为另一个类属性。
这个 display_size 属性中的实例属性。 __init__() 方法在计算的标记大小和所设置的最小标记大小之间进行选择。为了在这个项目中确定身体的显示大小,你要使用它的质量。
您还可以添加 colour 属性 __init__() ,暂时默认为黑色。
要测试这些新添加的内容,可以在控制台/REPL中尝试以下内容:
第一次呼叫 body.draw() 在原点绘制物体,因为你使用的是太阳系天体的默认位置。打电话给 body.move() 用一个“时间单位”所需的数量移动身体。因为身体的速度是 (1, 1, 1) ,身体将沿着三个轴中的每一个移动一个单位。第二次呼叫 body.draw() 在第二个位置画太阳系天体。请注意,当您这样做时,轴将自动重新排列。您很快就会在主代码中处理这个问题。
您可以返回到 SolarSystem 通过给太阳系及其天体添加两种新的方法,将其分类和连接起来: update_all() 和 draw_all() :
这个 update_all() 方法穿过太阳系中的每一个物体,移动并画出每一个物体。这个 draw_all() 方法使用太阳系的大小设置三轴的限制,并通过 pause() 功能。此方法还清除轴,为下一个绘图做好准备。
您可以开始构建一个简单的太阳系,并通过创建一个名为 simple_solar_system.py :
运行此脚本时,您将看到一个黑体从情节的中心移动:
您可以更改三维图形的透视图,这样您就可以直接沿着其中一个轴查看3D轴。可以通过将视图的方位和仰角设置为 0 在……里面 SolarSystem.__init__() :
跑动 simple_solar_system.py 现在给出以下观点:
这个 x -轴现在垂直于你的屏幕。因为你在2D显示器上显示一个3D视图,所以你总是有一个方向与你用来显示图形的2D平面垂直。这一限制使得很难区分物体何时沿该轴运动。你可以通过改变身体的速度 simple_solar_system.py 到 (1, 0, 0) 并再次运行脚本。身体似乎是静止的,因为它只是沿着轴移动,从你的屏幕出来!
您可以通过根据它的不同更改标记的大小来改进三维可视化。 x -协调。靠近您的对象看起来更大,而更远的对象看起来更小。您可以对 draw() 方法中的 SolarSystemBody 班级:
self.position[0] 表示身体的位置。 x -轴,即垂直于屏幕的轴。因子 30 除以是一个任意因素,您可以使用它来控制您希望这种效果有多强。
在本教程的后面,您还将添加另一个功能,将有助于可视化的三维运动的恒星和行星。
你有一个太阳系,里面有可以移动的物体。到目前为止,如果您只有一个身体,那么代码可以正常工作。但那不是一个非常有趣的太阳系!如果你有两个或两个以上的物体,它们就会通过相互的引力相互作用。
在这篇文章的开头,我简要回顾了你需要处理两个物体之间的引力的物理。由于在这个项目中使用的是任意单位,所以可以忽略引力常数 G 简单地计算出由于两个物体之间的重力而产生的力,如:
一旦你知道了两个物体之间的力,因为F=ma,您可以计算出每个对象必须使用的加速度:
一旦你知道加速度,你就可以改变物体的速度。
您可以添加两个新方法,一个在 SolarSystemBody 另一个在 SolarSystem ,计算出任何两个物体之间的力和加速度,并穿过太阳系中的所有物体,并计算它们之间的相互作用。
第一种方法计算出两个物体之间的引力,计算每个物体的加速度,并改变两个物体的速度。如果您愿意,可以将这些任务分为三种方法,但在本例中,我将将这些任务放在 SolarSystemBody :
accelerate_e_to_gravity() 对类型的对象调用。 SolarSystemBody 需要另一个 SolarSystemBody 身体作为一种争论。参数 self 和 other 代表两个身体相互作用。此方法的步骤如下:
现在你可以计算出任何两个天体之间的相互作用,你可以计算出太阳系中所有天体之间的相互作用。你可以把你的注意力转移到 SolarSystem 类的类:
这个 calculate_all_body_interactions() 方法贯穿太阳系的所有天体。每个天体与太阳系中的其他天体相互作用:
现在,您已经准备好创建一个简单的太阳系,并测试您到目前为止编写的代码。
在这个项目中,您将关注创建两种类型的天体之一:太阳和行星。您可以为这些机构创建两个类。新类继承自 SolarSystemBody :
这个 Sun 类的默认质量为10,000个单位,并将颜色设置为黄色。使用字符串 'yellow' ,这是Matplotlib中的有效颜色。
在 Planet 类创建一个 itertools.cycle 对象有三种颜色。在这种情况下,这三种颜色是红色、绿色和蓝色。你可以使用你想要的任何RGB颜色,也可以使用任意数量的颜色。在这个类中,使用带有RGB值的元组来定义颜色,而不是使用颜色名称的字符串。这也是在Matplotlib中定义颜色的有效方法。使用 next() 每当你创建一个新的行星时。
您还将默认质量设置为10个单元。
现在,你可以创建一个太阳系,其中一个太阳和两个行星在 simple_solar_system.py :
在这个脚本中,您创建了一个太阳和两个行星。你把太阳和行星分配给变量 sun 和 planets ,但这并不是严格要求的,因为 Sun 和 Planet 对象被创建,它们被添加到 solar_system 你不需要直接引用它们。
你用一个 while 循环来运行模拟。循环在每次迭代中执行三个操作。运行此脚本时,将获得以下动画:
它起作用了,算是吧。你可以看到太阳锚定在这个太阳系的中心,行星受到太阳引力的影响。除了行星在包含你电脑屏幕的平面上的运动(这些是 y -和 z --轴),你也可以看到行星越来越大,因为它们也在 x -轴,垂直于屏幕。
然而,你可能已经注意到行星的一些奇怪的行为。当它们被安排在太阳后面时,行星仍然被展示在太阳的前面。这不是数学上的问题--如果你跟踪行星的位置,你会发现 x -坐标显示,它们实际上是在太阳后面,正如你所预料的那样。
这个问题来自Matplotlib在绘图中绘制对象的方式。Matplotlib按绘制对象的顺序将对象按层绘制。因为你在行星之前创造了太阳, Sun 对象放在第一位 solar_system.bodies 并作为底层绘制。您可以通过在行星之后创建太阳来验证这一事实,在这种情况下,您将看到行星总是出现在太阳后面。
你会希望Matplotlib按照正确的顺序绘制太阳系的天体,从最前的那些天体开始。要实现这一点,您可以对 SolarSystem.bodies 的值为基础的列表。 x -协调每次刷新3D图形的时间。下面是如何在 update_all() 方法 SolarSystem :
使用List方法 sort 带着 key 参数来定义要用于排序列表的规则。这个 lambda 函数设置此规则。在本例中,您使用的值是 position[0] 表示 x -协调。因此,每次你打电话 update_all() 在模拟中 while 循环中,根据其沿 x -轴心。
运行 simple_solar_system.py 现在的脚本如下:
现在,你可以想象行星的轨道,就像它们围绕太阳运行一样。不断变化的大小显示了它们的 x -位置,当行星在太阳后面时,它们被隐藏在视线之外!
最后,你也可以移除轴线和网格,这样你在模拟中看到的就是太阳和行星。可以通过添加对Matplotlib的调用来做到这一点。 axis() 方法 SolarSystem.draw_all() :
模拟现在看起来是这样的:
使用Matplotlib对Python中的一个三维太阳系进行的模拟现在已经完成。在下一节中,您将添加一个功能,允许您查看 XY -模拟底部的飞机。这有助于可视化太阳系中物体的三维动力学。
在Python的三维太阳系模拟中,为了帮助可视化身体的运动,您可以在动画的“地板”上添加一个2D投影。这个2D投影将显示物体在 XY -飞机。要实现这一点,您需要将另一个绘图添加到显示动画的相同轴上,并且只需在 x -和 y -坐标。你可以锚定 z -与图形底部协调,使2D投影显示在动画的地板上。
您可以首先将一个新参数添加到 __init__() 方法的 SolarSystem 班级:
新参数 projection_2d ,默认为 False ,将允许您在两个可视化选项之间切换。如果 projection_2d 是 False 动画将只显示身体在3D中移动,没有轴和网格,就像你最后看到的结果一样。
让我们开始做一些改变 projection_2d 是 True :
您所做的更改如下:
您还需要在 simple_solar_system.py 打开2D投影:
模拟现在看起来如下:
的二维投影 XY -平面使它更容易跟随轨道物体的路径。
我们将用Python完成另一个三维太阳系的模拟。您将使用已经定义的类来模拟双星系统。创建一个名为 binary_star_system.py 创造两个太阳和两个行星:
③ python 绘制三维图形、三维数据散点图
1. 绘制3D曲面图
from matplotlib import pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
fig=plt.figure()
ax=Axes3D(fig)
x=np.arange(-4,4,0.25)
y=np.arange(-4,4,0.25)
x,y=np.meshgrid(x,y)
r=np.sqrt(x**2, y**2)
z=np.sin(r)
//绘面函数
ax.plot_surface(x,y,z,rstride=1,cstride=1,cmap=“rainbow”
plt.show()
2.绘制三维的散点图(表述一些数据点分布)
4a.mat数据地址:http blog.csdn.net/eddy_zhang/article/details/50496164
from matplotlib import pyplot as plt
import scipy.io as sio
from mpl_toolkits.mplot3d import Axes3D
matl=‘4a.mat’
data=sio.loadmat(matl)
m=data[‘data’]
x,y,z=m[0],m[1],m[2]
//创建一个绘图工程
ax=plt.subplot(111,project=‘3D’)
//将数据点分成三部分画,在颜色上有区分度
ax.scatter(x[:1000], y[:1000], z[:1000],c=‘y’ )//绘制数据点
ax.scatter(x[1000:4000], y[1000:4000], z[1000:4000],c=‘r’ )//绘制数据点
ax.scatter(x[4000:], y[4000:], z[4000:],c=‘g’ )//绘制数据点
ax.set_zlable(‘z’)//坐标轴
ax.set_ylable(‘y’)//坐标轴
ax.set_xlable(‘x’)
plt.show()
④ c4d怎么用python画三维图
要以Python生成器为媒介。
用以下代码可以简单行程一个三维图,在这个基础上根据您的需要改写代码就可以了。
在生成器内的python代码会生成一个object。默认下,生成了一个立方体,并返回:
import c4d
def main():
return c4d.BaseObject(c4d.Ocube)
UserData输入
当然也可以返回别的物体,或者用userdata调整物体参数。注意op可以快速引用生成器对象。
importc4d
defmain():
cone =c4d.BaseObject(c4d.Ocone)
cone[c4d.PRIM_CONE_TRAD] = op[c4d.ID_USERDATA,1]
return cone
具体创建三维图步骤如下
1首先要【创建】-【造型】-【python生成器】,默认生成一个立方体即python编辑器
2-选中对象,右下角【打开python编辑器】
3-代码表示定义一个函数并返回C4D基本物体
4-这里简单改一下,把原代码中的Ocube改成Osphere,点一下执行,会生成一个三维球体。对于基本造型对象,这里的对象名称通用语法为大写字母O加对象的英文。
5-这里还可以用定义变量返回值的表达方法,比如这里定义变量cone(圆锥),c4d的属性就是大写字母O加上圆锥的英文即Ocone,返回这个变量值,执行就得到了一个圆锥。
6-除了生成基本三维图形,python编辑器可以做很多事情,这里如果有一定的python编码基础,会更容易一些。可以在网上找几个实例试一下,比如这种,生成数字的。可以在搜索引擎输入关键字Cinema 4D - Python scripts来检索别人写好的脚本。
⑤ Python如何运用matplotlib库绘制3D图形
3D图形在数据分析、数据建模、图形和图像处理等领域中都有着广泛的应用,下面将给大家介绍一下如何在Python中使用 matplotlib进行3D图形的绘制,包括3D散点、3D表面、3D轮廓、3D直线(曲线)以及3D文字等的绘制。
准备工作:
python中绘制3D图形,依旧使用常用的绘图模块matplotlib,但需要安装mpl_toolkits工具包,安装方法如下:windows命令行进入到python安装目录下的Scripts文件夹下,执行: pip install --upgrade matplotlib即可;Linux环境下直接执行该命令。
安装好这个模块后,即可调用mpl_tookits下的mplot3d类进行3D图形的绘制。
下面以实例进行说明。
1、3D表面形状的绘制
这段代码是绘制一个3D的椭球表面,结果如下:
2、3D直线(曲线)的绘制
这段代码用于绘制一个螺旋状3D曲线,结果如下:
3、绘制3D轮廓
绘制结果如下:
相关推荐:《Python视频教程》
4、绘制3D直方图
绘制结果如下:
5、绘制3D网状线
绘制结果如下:
6、绘制3D三角面片图
绘制结果如下:
7、绘制3D散点图
绘制结果如下:
⑥ 万字教你如何用 Python 实现线性规划
想象一下,您有一个线性方程组和不等式系统。这样的系统通常有许多可能的解决方案。线性规划是一组数学和计算工具,可让您找到该系统的特定解,该解对应于某些其他线性函数的最大值或最小值。
混合整数线性规划是 线性规划 的扩展。它处理至少一个变量采用离散整数而不是连续值的问题。尽管乍一看混合整数问题与连续变量问题相似,但它们在灵活性和精度方面具有显着优势。
整数变量对于正确表示自然用整数表示的数量很重要,例如生产的飞机数量或服务的客户数量。
一种特别重要的整数变量是 二进制变量 。它只能取 零 或 一 的值,在做出是或否的决定时很有用,例如是否应该建造工厂或者是否应该打开或关闭机器。您还可以使用它们来模拟逻辑约束。
线性规划是一种基本的优化技术,已在科学和数学密集型领域使用了数十年。它精确、相对快速,适用于一系列实际应用。
混合整数线性规划允许您克服线性规划的许多限制。您可以使用分段线性函数近似非线性函数、使用半连续变量、模型逻辑约束等。它是一种计算密集型工具,但计算机硬件和软件的进步使其每天都更加适用。
通常,当人们试图制定和解决优化问题时,第一个问题是他们是否可以应用线性规划或混合整数线性规划。
以下文章说明了线性规划和混合整数线性规划的一些用例:
随着计算机能力的增强、算法的改进以及更多用户友好的软件解决方案的出现,线性规划,尤其是混合整数线性规划的重要性随着时间的推移而增加。
解决线性规划问题的基本方法称为,它有多种变体。另一种流行的方法是。
混合整数线性规划问题可以通过更复杂且计算量更大的方法来解决,例如,它在幕后使用线性规划。这种方法的一些变体是,它涉及使用 切割平面 ,以及。
有几种适用于线性规划和混合整数线性规划的合适且众所周知的 Python 工具。其中一些是开源的,而另一些是专有的。您是否需要免费或付费工具取决于问题的规模和复杂性,以及对速度和灵活性的需求。
值得一提的是,几乎所有广泛使用的线性规划和混合整数线性规划库都是以 Fortran 或 C 或 C++ 原生和编写的。这是因为线性规划需要对(通常很大)矩阵进行计算密集型工作。此类库称为求解器。Python 工具只是求解器的包装器。
Python 适合围绕本机库构建包装器,因为它可以很好地与 C/C++ 配合使用。对于本教程,您不需要任何 C/C++(或 Fortran),但如果您想了解有关此酷功能的更多信息,请查看以下资源:
基本上,当您定义和求解模型时,您使用 Python 函数或方法调用低级库,该库执行实际优化工作并将解决方案返回给您的 Python 对象。
几个免费的 Python 库专门用于与线性或混合整数线性规划求解器交互:
在本教程中,您将使用SciPy和PuLP来定义和解决线性规划问题。
在本节中,您将看到线性规划问题的两个示例:
您将在下一节中使用 Python 来解决这两个问题。
考虑以下线性规划问题:
你需要找到X和Ÿ使得红色,蓝色和黄色的不平等,以及不平等X 0和ÿ 0,是满意的。同时,您的解决方案必须对应于z的最大可能值。
您需要找到的自变量(在本例中为 x 和 y )称为 决策变量 。要最大化或最小化的决策变量的函数(在本例中为 z) 称为 目标函数 、 成本函数 或仅称为 目标 。您需要满足的 不等式 称为 不等式约束 。您还可以在称为 等式约束 的约束中使用方程。
这是您如何可视化问题的方法:
红线代表的功能2 X + Ý = 20,和它上面的红色区域示出了红色不等式不满足。同样,蓝线是函数 4 x + 5 y = 10,蓝色区域被禁止,因为它违反了蓝色不等式。黄线是 x + 2 y = 2,其下方的黄色区域是黄色不等式无效的地方。
如果您忽略红色、蓝色和黄色区域,则仅保留灰色区域。灰色区域的每个点都满足所有约束,是问题的潜在解决方案。该区域称为 可行域 ,其点为 可行解 。在这种情况下,有无数可行的解决方案。
您想最大化z。对应于最大z的可行解是 最优解 。如果您尝试最小化目标函数,那么最佳解决方案将对应于其可行的最小值。
请注意,z是线性的。你可以把它想象成一个三维空间中的平面。这就是为什么最优解必须在可行区域的 顶点 或角上的原因。在这种情况下,最佳解决方案是红线和蓝线相交的点,稍后您将看到。
有时,可行区域的整个边缘,甚至整个区域,都可以对应相同的z值。在这种情况下,您有许多最佳解决方案。
您现在已准备好使用绿色显示的附加等式约束来扩展问题:
方程式 x + 5 y = 15,以绿色书写,是新的。这是一个等式约束。您可以通过向上一张图像添加相应的绿线来将其可视化:
现在的解决方案必须满足绿色等式,因此可行区域不再是整个灰色区域。它是绿线从与蓝线的交点到与红线的交点穿过灰色区域的部分。后一点是解决方案。
如果插入x的所有值都必须是整数的要求,那么就会得到一个混合整数线性规划问题,可行解的集合又会发生变化:
您不再有绿线,只有沿线的x值为整数的点。可行解是灰色背景上的绿点,此时最优解离红线最近。
这三个例子说明了 可行的线性规划问题 ,因为它们具有有界可行区域和有限解。
如果没有解,线性规划问题是 不可行的 。当没有解决方案可以同时满足所有约束时,通常会发生这种情况。
例如,考虑如果添加约束x + y 1会发生什么。那么至少有一个决策变量(x或y)必须是负数。这与给定的约束x 0 和y 0相冲突。这样的系统没有可行的解决方案,因此称为不可行的。
另一个示例是添加与绿线平行的第二个等式约束。这两行没有共同点,因此不会有满足这两个约束的解决方案。
一个线性规划问题是 无界的 ,如果它的可行区域是无界,将溶液不是有限。这意味着您的变量中至少有一个不受约束,可以达到正无穷大或负无穷大,从而使目标也无限大。
例如,假设您采用上面的初始问题并删除红色和黄色约束。从问题中删除约束称为 放松 问题。在这种情况下,x和y不会在正侧有界。您可以将它们增加到正无穷大,从而产生无限大的z值。
在前面的部分中,您研究了一个与任何实际应用程序无关的抽象线性规划问题。在本小节中,您将找到与制造业资源分配相关的更具体和实用的优化问题。
假设一家工厂生产四种不同的产品,第一种产品的日产量为x ₁,第二种产品的产量为x 2,依此类推。目标是确定每种产品的利润最大化日产量,同时牢记以下条件:
数学模型可以这样定义:
目标函数(利润)在条件 1 中定义。人力约束遵循条件 2。对原材料 A 和 B 的约束可以从条件 3 和条件 4 中通过对每种产品的原材料需求求和得出。
最后,产品数量不能为负,因此所有决策变量必须大于或等于零。
与前面的示例不同,您无法方便地将其可视化,因为它有四个决策变量。但是,无论问题的维度如何,原理都是相同的。
在本教程中,您将使用两个Python 包来解决上述线性规划问题:
SciPy 设置起来很简单。安装后,您将拥有开始所需的一切。它的子包 scipy.optimize 可用于线性和非线性优化。
PuLP 允许您选择求解器并以更自然的方式表述问题。PuLP 使用的默认求解器是COIN-OR Branch and Cut Solver (CBC)。它连接到用于线性松弛的COIN-OR 线性规划求解器 (CLP)和用于切割生成的COIN-OR 切割生成器库 (CGL)。
另一个伟大的开源求解器是GNU 线性规划工具包 (GLPK)。一些着名且非常强大的商业和专有解决方案是Gurobi、CPLEX和XPRESS。
除了在定义问题时提供灵活性和运行各种求解器的能力外,PuLP 使用起来不如 Pyomo 或 CVXOPT 等替代方案复杂,后者需要更多的时间和精力来掌握。
要学习本教程,您需要安装 SciPy 和 PuLP。下面的示例使用 SciPy 1.4.1 版和 PuLP 2.1 版。
您可以使用pip以下方法安装两者:
您可能需要运行pulptest或sudo pulptest启用 PuLP 的默认求解器,尤其是在您使用 Linux 或 Mac 时:
或者,您可以下载、安装和使用 GLPK。它是免费和开源的,适用于 Windows、MacOS 和 Linux。在本教程的后面部分,您将看到如何将 GLPK(除了 CBC)与 PuLP 一起使用。
在 Windows 上,您可以下载档案并运行安装文件。
在 MacOS 上,您可以使用 Homebrew:
在 Debian 和 Ubuntu 上,使用apt来安装glpk和glpk-utils:
在Fedora,使用dnf具有glpk-utils:
您可能还会发现conda对安装 GLPK 很有用:
安装完成后,可以查看GLPK的版本:
有关详细信息,请参阅 GLPK 关于使用Windows 可执行文件和Linux 软件包进行安装的教程。
在本节中,您将学习如何使用 SciPy优化和求根库进行线性规划。
要使用 SciPy 定义和解决优化问题,您需要导入scipy.optimize.linprog():
现在您已经linprog()导入,您可以开始优化。
让我们首先解决上面的线性规划问题:
linprog()仅解决最小化(而非最大化)问题,并且不允许具有大于或等于符号 ( ) 的不等式约束。要解决这些问题,您需要在开始优化之前修改您的问题:
引入这些更改后,您将获得一个新系统:
该系统与原始系统等效,并且将具有相同的解决方案。应用这些更改的唯一原因是克服 SciPy 与问题表述相关的局限性。
下一步是定义输入值:
您将上述系统中的值放入适当的列表、元组或NumPy 数组中:
注意:请注意行和列的顺序!
约束左侧和右侧的行顺序必须相同。每一行代表一个约束。
来自目标函数和约束左侧的系数的顺序必须匹配。每列对应一个决策变量。
下一步是以与系数相同的顺序定义每个变量的界限。在这种情况下,它们都在零和正无穷大之间:
此语句是多余的,因为linprog()默认情况下采用这些边界(零到正无穷大)。
注:相反的float("inf"),你可以使用math.inf,numpy.inf或scipy.inf。
最后,是时候优化和解决您感兴趣的问题了。你可以这样做linprog():
参数c是指来自目标函数的系数。A_ub和b_ub分别与不等式约束左边和右边的系数有关。同样,A_eq并b_eq参考等式约束。您可以使用bounds提供决策变量的下限和上限。
您可以使用该参数method来定义要使用的线性规划方法。有以下三种选择:
linprog() 返回具有以下属性的数据结构:
您可以分别访问这些值:
这就是您获得优化结果的方式。您还可以以图形方式显示它们:
如前所述,线性规划问题的最优解位于可行区域的顶点。在这种情况下,可行区域只是蓝线和红线之间的绿线部分。最优解是代表绿线和红线交点的绿色方块。
如果要排除相等(绿色)约束,只需删除参数A_eq并b_eq从linprog()调用中删除:
解决方案与前一种情况不同。你可以在图表上看到:
在这个例子中,最优解是红色和蓝色约束相交的可行(灰色)区域的紫色顶点。其他顶点,如黄色顶点,具有更高的目标函数值。
您可以使用 SciPy 来解决前面部分所述的资源分配问题:
和前面的例子一样,你需要从上面的问题中提取必要的向量和矩阵,将它们作为参数传递给.linprog(),然后得到结果:
结果告诉您最大利润是1900并且对应于x ₁ = 5 和x ₃ = 45。在给定条件下生产第二和第四个产品是没有利润的。您可以在这里得出几个有趣的结论:
opt.statusis0和opt.successis True,说明优化问题成功求解,最优可行解。
SciPy 的线性规划功能主要用于较小的问题。对于更大和更复杂的问题,您可能会发现其他库更适合,原因如下:
幸运的是,Python 生态系统为线性编程提供了几种替代解决方案,这些解决方案对于更大的问题非常有用。其中之一是 PuLP,您将在下一节中看到它的实际应用。
PuLP 具有比 SciPy 更方便的线性编程 API。您不必在数学上修改您的问题或使用向量和矩阵。一切都更干净,更不容易出错。
像往常一样,您首先导入您需要的内容:
现在您已经导入了 PuLP,您可以解决您的问题。
您现在将使用 PuLP 解决此系统:
第一步是初始化一个实例LpProblem来表示你的模型:
您可以使用该sense参数来选择是执行最小化(LpMinimize或1,这是默认值)还是最大化(LpMaximize或-1)。这个选择会影响你的问题的结果。
一旦有了模型,就可以将决策变量定义为LpVariable类的实例:
您需要提供下限,lowBound=0因为默认值为负无穷大。该参数upBound定义了上限,但您可以在此处省略它,因为它默认为正无穷大。
可选参数cat定义决策变量的类别。如果您使用的是连续变量,则可以使用默认值"Continuous"。
您可以使用变量x和y创建表示线性表达式和约束的其他 PuLP 对象:
当您将决策变量与标量相乘或构建多个决策变量的线性组合时,您会得到一个pulp.LpAffineExpression代表线性表达式的实例。
注意:您可以增加或减少变量或表达式,你可以乘他们常数,因为纸浆类实现一些Python的特殊方法,即模拟数字类型一样__add__(),__sub__()和__mul__()。这些方法用于像定制运营商的行为+,-和*。
类似地,您可以将线性表达式、变量和标量与运算符 ==、=以获取表示模型线性约束的纸浆.LpConstraint实例。
注:也有可能与丰富的比较方法来构建的约束.__eq__(),.__le__()以及.__ge__()定义了运营商的行为==,=。
考虑到这一点,下一步是创建约束和目标函数并将它们分配给您的模型。您不需要创建列表或矩阵。只需编写 Python 表达式并使用+=运算符将它们附加到模型中:
在上面的代码中,您定义了包含约束及其名称的元组。LpProblem允许您通过将约束指定为元组来向模型添加约束。第一个元素是一个LpConstraint实例。第二个元素是该约束的可读名称。
设置目标函数非常相似:
或者,您可以使用更短的符号:
现在您已经添加了目标函数并定义了模型。
注意:您可以使用运算符将 约束或目标附加到模型中,+=因为它的类LpProblem实现了特殊方法.__iadd__(),该方法用于指定 的行为+=。
对于较大的问题,lpSum()与列表或其他序列一起使用通常比重复+运算符更方便。例如,您可以使用以下语句将目标函数添加到模型中:
它产生与前一条语句相同的结果。
您现在可以看到此模型的完整定义:
模型的字符串表示包含所有相关数据:变量、约束、目标及其名称。
注意:字符串表示是通过定义特殊方法构建的.__repr__()。有关 的更多详细信息.__repr__(),请查看Pythonic OOP 字符串转换:__repr__vs__str__ .
最后,您已准备好解决问题。你可以通过调用.solve()你的模型对象来做到这一点。如果要使用默认求解器 (CBC),则不需要传递任何参数:
.solve()调用底层求解器,修改model对象,并返回解决方案的整数状态,1如果找到了最优解。有关其余状态代码,请参阅LpStatus[]。
你可以得到优化结果作为 的属性model。该函数value()和相应的方法.value()返回属性的实际值:
model.objective持有目标函数model.constraints的值,包含松弛变量的值,以及对象x和y具有决策变量的最优值。model.variables()返回一个包含决策变量的列表:
如您所见,此列表包含使用 的构造函数创建的确切对象LpVariable。
结果与您使用 SciPy 获得的结果大致相同。
注意:注意这个方法.solve()——它会改变对象的状态,x并且y!
您可以通过调用查看使用了哪个求解器.solver:
输出通知您求解器是 CBC。您没有指定求解器,因此 PuLP 调用了默认求解器。
如果要运行不同的求解器,则可以将其指定为 的参数.solve()。例如,如果您想使用 GLPK 并且已经安装了它,那么您可以solver=GLPK(msg=False)在最后一行使用。请记住,您还需要导入它:
现在你已经导入了 GLPK,你可以在里面使用它.solve():
该msg参数用于显示来自求解器的信息。msg=False禁用显示此信息。如果要包含信息,则只需省略msg或设置msg=True。
您的模型已定义并求解,因此您可以按照与前一种情况相同的方式检查结果:
使用 GLPK 得到的结果与使用 SciPy 和 CBC 得到的结果几乎相同。
一起来看看这次用的是哪个求解器:
正如您在上面用突出显示的语句定义的那样model.solve(solver=GLPK(msg=False)),求解器是 GLPK。
您还可以使用 PuLP 来解决混合整数线性规划问题。要定义整数或二进制变量,只需传递cat="Integer"或cat="Binary"到LpVariable。其他一切都保持不变:
在本例中,您有一个整数变量并获得与之前不同的结果:
Nowx是一个整数,如模型中所指定。(从技术上讲,它保存一个小数点后为零的浮点值。)这一事实改变了整个解决方案。让我们在图表上展示这一点:
如您所见,最佳解决方案是灰色背景上最右边的绿点。这是两者的最大价值的可行的解决方案x和y,给它的最大目标函数值。
GLPK 也能够解决此类问题。
现在你可以使用 PuLP 来解决上面的资源分配问题:
定义和解决问题的方法与前面的示例相同:
在这种情况下,您使用字典 x来存储所有决策变量。这种方法很方便,因为字典可以将决策变量的名称或索引存储为键,将相应的LpVariable对象存储为值。列表或元组的LpVariable实例可以是有用的。
上面的代码产生以下结果:
如您所见,该解决方案与使用 SciPy 获得的解决方案一致。最有利可图的解决方案是每天生产5.0第一件产品和45.0第三件产品。
让我们把这个问题变得更复杂和有趣。假设由于机器问题,工厂无法同时生产第一种和第三种产品。在这种情况下,最有利可图的解决方案是什么?
现在您有另一个逻辑约束:如果x ₁ 为正数,则x ₃ 必须为零,反之亦然。这是二元决策变量非常有用的地方。您将使用两个二元决策变量y ₁ 和y ₃,它们将表示是否生成了第一个或第三个产品:
除了突出显示的行之外,代码与前面的示例非常相似。以下是差异:
这是解决方案:
事实证明,最佳方法是排除第一种产品而只生产第三种产品。
就像有许多资源可以帮助您学习线性规划和混合整数线性规划一样,还有许多具有 Python 包装器的求解器可用。这是部分列表:
其中一些库,如 Gurobi,包括他们自己的 Python 包装器。其他人使用外部包装器。例如,您看到可以使用 PuLP 访问 CBC 和 GLPK。
您现在知道什么是线性规划以及如何使用 Python 解决线性规划问题。您还了解到 Python 线性编程库只是本机求解器的包装器。当求解器完成其工作时,包装器返回解决方案状态、决策变量值、松弛变量、目标函数等。