导航:首页 > 编程语言 > 数字虚拟相关器python

数字虚拟相关器python

发布时间:2023-01-30 21:52:48

❶ 最受欢迎的 15 大 python 库有哪些

Python常用库大全,看看有没有你需要的。
环境管理
管理 Python 版本和环境的工具
p – 非常简单的交互式 python 版本管理工具。
pyenv – 简单的 Python 版本管理工具。
Vex – 可以在虚拟环境中执行命令
virtualenv – 创建独立 Python 环境的工具。
virtualenvwrapper- virtualenv 的一组扩展。
包管理
管理包和依赖的工具。
pip – Python 包和依赖关系管理工具。
pip-tools – 保证 Python 包依赖关系更新的一组工具。
conda – 跨平台,Python 二进制包管理工具。
Curdling – 管理 Python 包的命令行工具。
wheel – Python 分发的新标准,意在取代 eggs。
包仓库
本地 PyPI 仓库服务和代理。
warehouse – 下一代 PyPI。
Warehousebandersnatch – PyPA 提供的 PyPI 镜像工具。
devpi – PyPI 服务和打包/测试/分发工具。
localshop – 本地 PyPI 服务(自定义包并且自动对 PyPI 镜像)。
分发
打包为可执行文件以便分发。
PyInstaller – 将 Python 程序转换成独立的执行文件(跨平台)。
dh-virtualenv – 构建并将 virtualenv 虚拟环境作为一个 Debian 包来发布。
Nuitka – 将脚本、模块、包编译成可执行文件或扩展模块。
py2app – 将 Python 脚本变为独立软件包(Mac OS X)。
py2exe – 将 Python 脚本变为独立软件包(Windows)。
pynsist – 一个用来创建 Windows 安装程序的工具,可以在安装程序中打包 Python本身。
构建工具
源码编译成软件。
buildout – 一个构建系统,从多个组件来创建,组装和部署应用。
BitBake – 针对嵌入式 linux 的类似 make 的构建工具。
fabricate – 对任何语言自动找到依赖关系的构建工具。
PlatformIO – 多平台命令行构建工具。
PyBuilder – 纯 Python 实现的持续化构建工具。
SCons – 软件构建工具。
交互式解析器
交互式 Python 解析器。
IPython – 功能丰富的工具,非常有效的使用交互式 Python。
bpython- 界面丰富的 Python 解析器。
ptpython – 高级交互式Python解析器, 构建于python-prompt-toolkit 之上。
文件
文件管理和 MIME(多用途的网际邮件扩充协议)类型检测。
imghdr – (Python 标准库)检测图片类型。
mimetypes – (Python 标准库)将文件名映射为 MIME 类型。
path.py – 对 os.path 进行封装的模块。
pathlib – (Python3.4+ 标准库)跨平台的、面向对象的路径操作库。
python-magic- 文件类型检测的第三方库 libmagic 的 Python 接口。
Unipath- 用面向对象的方式操作文件和目录
watchdog – 管理文件系统事件的 API 和 shell 工具
日期和时间
操作日期和时间的类库。
arrow- 更好的 Python 日期时间操作类库。
Chronyk – Python 3 的类库,用于解析手写格式的时间和日期。
dateutil – Python datetime 模块的扩展。
delorean- 解决 Python 中有关日期处理的棘手问题的库。
moment – 一个用来处理时间和日期的Python库。灵感来自于Moment.js。
PyTime – 一个简单易用的Python模块,用于通过字符串来操作日期/时间。
pytz – 现代以及历史版本的世界时区定义。将时区数据库引入Python。
when.py – 提供用户友好的函数来帮助用户进行常用的日期和时间操作。
文本处理
用于解析和操作文本的库。
通用
chardet – 字符编码检测器,兼容 Python2 和 Python3。
difflib – (Python 标准库)帮助我们进行差异化比较。
ftfy – 让Unicode文本更完整更连贯。
fuzzywuzzy – 模糊字符串匹配。
Levenshtein – 快速计算编辑距离以及字符串的相似度。
pangu.py – 在中日韩语字符和数字字母之间添加空格。
pyfiglet -figlet 的 Python实现。
shortuuid – 一个生成器库,用以生成简洁的,明白的,URL 安全的 UUID。
unidecode – Unicode 文本的 ASCII 转换形式 。
uniout – 打印可读的字符,而不是转义的字符串。
xpinyin – 一个用于把汉字转换为拼音的库。

❷ Python和java,有什么不同

Python入门更快,但是java的运用更加广泛,所以二者各有各的优缺点,要学哪个还是要根据自己的实际需求情况来进行判断和选择。

首先来了解一下java与python各自的特点:

Java:高度面向对象的高级编程语言

设计初衷是“写一次代码,在哪里都可以用”,可以完成任何规模的任务,所以它也是很多公司在做商业级项目的时候的普遍选择。

Python:拥有简洁语法的高级编程语言

设计初衷是“让代码读起来更轻松”,并且让程序员们比起用其他语言,可以写更少的代码,事半功倍。

最后是给初入行业的新人一些学习建议:

如果你只是编程爱好者,或者把编程语言作为一个工作中的应用工具,Python是个不错的选择。如果你想在程序员的道路上稳步发展,建议先学习Java,再学python,C++,JavaScript,PHP等其他语言,会事半功倍。

一名优秀的程序员,绝不会只靠一门语言走到黑,通吃它们就完了!兼容并蓄,触类旁通,这才是一个成熟IT从业者该有的心态!

想要系统学习,你可以考察对比一下开设有相关专业的热门学校。好的学校拥有根据当下企业需求自主研发课程的能力,能够在校期间取得大专或本科学历,中博软件学院、南京课工场、南京北大青鸟等开设相关专业的学校都是不错的,建议实地考察对比一下。

祝学有所成!望采纳!

❸ python是什么样的编程语言

python是什么类型的编程语言? Python是一种计算机程序设计语言,是一种面向对象的动态、强类型脚本语言(解释型语言)。 脚本语言:一般也是解释型语言。

优点

简单:Python是一种代表简单主义思想的语言。阅读一个良好的Python程序就感觉像是在读英语一样。它使你能够专注于解决问题而不是去搞明白语言本身。

易学:Python极其容易上手,因为Python有极其简单的说明文档 。

易读、易维护:风格清晰划一、强制缩进

用途广泛

速度快:Python 的底层是用 C 语言写的,很多标准库和第三方库也都是用 C 写的,运行速度非常快。

免费、开源:Python是FLOSS(自由/开放源码软件)之一。使用者可以自由地发布这个软件的拷贝、阅读它的源代码、对它做改动、把它的一部分用于新的自由软件中。FLOSS是基于一个团体分享知识的概念。

高层语言:用Python语言编写程序的时候无需考虑诸如如何管理你的程序使用的内存一类的底层细节。

可移植性:由于它的开源本质,Python已经被移植在许多平台上(经过改动使它能够工作在不同平台上)。这些平台包括Linux、Windows、FreeBSD、Macintosh、Solaris、OS/2、Amiga、AROS、AS/400、BeOS、OS/390、z/OS、Palm OS、QNX、VMS、Psion、Acom RISC OS、VxWorks、PlayStation、Sharp Zaurus、Windows CE、PocketPC、Symbian以及Google基于linux开发的android平台。

解释性:一个用编译性语言比如C或C++写的程序可以从源文件(即C或C++语言)转换到一个你的计算机使用的语言(二进制代码,即0和1)。这个过程通过编译器和不同的标记、选项完成。

运行程序的时候,连接/转载器软件把你的程序从硬盘复制到内存中并且运行。而Python语言写的程序不需要编译成二进制代码。你可以直接从源代码运行 程序。

在计算机内部,Python解释器把源代码转换成称为字节码的中间形式,然后再把它翻译成计算机使用的机器语言并运行。这使得使用Python更加简单。也使得Python程序更加易于移植。

面向对象:Python既支持面向过程的编程也支持面向对象的编程。在“面向过程”的语言中,程序是由过程或仅仅是可重用代码的函数构建起来的。在“面向对象”的语言中,程序是由数据和功能组合而成的对象构建起来的。

Python是完全面向对象的语言。函数、模块、数字、字符串都是对象。并且完全支持继承、重载、派生、多继承,有益于增强源代码的复用性。Python支持重载运算符和动态类型。相对于Lisp这种传统的函数式编程语言,Python对函数式设计只提供了有限的支持。有两个标准库(functools, itertools)提供了Haskell和Standard ML中久经考验的函数式程序设计工具。

可扩展性、可扩充性:如果需要一段关键代码运行得更快或者希望某些算法不公开,可以部分程序用C或C++编写,然后在Python程序中使用它们。

Python本身被设计为可扩充的。并非所有的特性和功能都集成到语言核心。Python提供了丰富的API和工具,以便程序员能够轻松地使用C语言、C++、Cython来编写扩充模块。Python编译器本身也可以被集成到其它需要脚本语言的程序内。因此,很多人还把Python作为一种“胶水语言”(glue language)使用。使用Python将其他语言编写的程序进行集成和封装。在Google内部的很多项目,例如Google Engine使用C++编写性能要求极高的部分,然后用Python或Java/Go调用相应的模块。《Python技术手册》的作者马特利(Alex Martelli)说:“这很难讲,不过,2004 年,Python 已在Google内部使用,Google 召募许多 Python 高手,但在这之前就已决定使用Python,他们的目的是 Python where we can, C++ where we must,在操控硬件的场合使用C++,在快速开发时候使用 Python。”

可嵌入性:可以把Python嵌入C/C++程序,从而向程序用户提供脚本功能。

丰富的库:Python标准库确实很庞大。它可以帮助处理各种工作,包括正则表达式、文档生成、单元测试、线程、数据库、网页浏览器、CGI、FTP、电子邮件、XML、XML-RPC、HTML、WAV文件、密码系统、GUI(图形用户界面)、Tk和其他与系统有关的操作。这被称作Python的“功能齐全”理念。除了标准库以外,还有许多其他高质量的库,如wxPython、Twisted和Python图像库等等。

规范的代码:Python采用强制缩进的方式使得代码具有较好可读性。而Python语言写的程序不需要编译成二进制代码。Python的作者设计限制性很强的语法,使得不好的编程习惯(例如if语句的下一行不向右缩进)都不能通过编译。其中很重要的一项就是Python的缩进规则。一个和其他大多数语言(如C)的区别就是,一个模块的界限,完全是由每行的首字符在这一行的位置来决定(而C语言是用一对花括号{}来明确的定出模块的边界,与字符的位置毫无关系)。通过强制程序员们缩进(包括if,for和函数定义等所有需要使用模块的地方),Python确实使得程序更加清晰和美观。

高级动态编程:虽然Python可能被粗略地分类为“脚本语言”(script language),但实际上一些大规模软件开发计划例如Zope、Mnet及BitTorrent,Google也广泛地使用它。Python的支持者较喜欢称它为一种高级动态编程语言,原因是“脚本语言”泛指仅作简单程序设计任务的语言,如shellscript、VBScript等只能处理简单任务的编程语言,并不能与Python相提并论。

做科学计算优点多:说起科学计算,首先会被提到的可能是MATLAB。除了MATLAB的一些专业性很强的工具箱还无法被替代之外,MATLAB的大部分常用功能都可以在Python世界中找到相应的扩展库。和MATLAB相比,用Python做科学计算有如下优点:

● 首先,MATLAB是一款商用软件,并且价格不菲。而Python完全免费,众多开源的科学计算库都提供了Python的调用接口。用户可以在任何计算机上免费安装Python及其绝大多数扩展库。

● 其次,与MATLAB相比,Python是一门更易学、更严谨的程序设计语言。它能让用户编写出更易读、易维护的代码。

● 最后,MATLAB主要专注于工程和科学计算。然而即使在计算领域,也经常会遇到文件管理、界面设计、网络通信等各种需求。而Python有着丰富的扩展库,可以轻易完成各种高级任务,开发者可以用Python实现完整应用程序所需的各种功能。

缺点

单行语句和命令行输出问题:很多时候不能将程序连写成一行,如import sys;for i in sys.path:print i。而perl和awk就无此限制,可以较为方便的在shell下完成简单程序,不需要如Python一样,必须将程序写入一个.py文件。

给初学者带来困惑:独特的语法,这也许不应该被称为局限,但是它用缩进来区分语句关系的方式还是给很多初学者带来了困惑。即便是很有经验的Python程序员,也可能陷入陷阱当中。

运行速度慢:这里是指与C和C++相比。Python开发人员尽量避开不成熟或者不重要的优化。一些针对非重要部位的加快运行速度的补丁通常不会被合并到Python内。所以很多人认为Python很慢。不过,根据二八定律,大多数程序对速度要求不高。在某些对运行速度要求很高的情况,Python设计师倾向于使用JIT技术,或者用使用C/C++语言改写这部分程序。可用的JIT技术是PyPy。

和其他语言区别

对于一个特定的问题,只要有一种最好的方法来解决

这在由Tim Peters写的Python格言(称为The Zen of Python)里面表述为:There should be one-- and preferably only one --obvious way to do it. 这正好和Perl语言(另一种功能类似的高级动态语言)的中心思想TMTOWTDI(There's More Than One Way To Do It)完全相反。

Python的设计哲学是“优雅”、“明确”、“简单”。因此,Perl语言中“总是有多种方法来做同一件事”的理念在Python开发者中通常是难以忍受的。Python开发者的哲学是“用一种方法,最好是只有一种方法来做一件事”。在设计Python语言时,如果面临多种选择,Python开发者一般会拒绝花俏的语法,而选择明确的没有或者很少有歧义的语法。由于这种设计观念的差异,Python源代码通常被认为比Perl具备更好的可读性,并且能够支撑大规模的软件开发。这些准则被称为Python格言。在Python解释器内运行import this可以获得完整的列表。

更高级的Virtual Machine

Python在执行时,首先会将.py文件中的源代码编译成Python的byte code(字节码),然后再由Python Virtual Machine(Python虚拟机)来执行这些编译好的byte code。这种机制的基本思想跟Java,.NET是一致的。然而,Python Virtual Machine与Java或.NET的Virtual Machine不同的是,Python的Virtual Machine是一种更高级的Virtual Machine。这里的高级并不是通常意义上的高级,不是说Python的Virtual Machine比Java或.NET的功能更强大,而是说和Java 或.NET相比,Python的Virtual Machine距离真实机器的距离更远。或者可以这么说,Python的Virtual Machine是一种抽象层次更高的Virtual Machine。基于C的Python编译出的字节码文件,通常是.pyc格式。除此之外,Python还可以以交互模式运行,比如主流操作系统Unix/Linux、Mac、Windows都可以直接在命令模式下直接运行Python交互环境。直接下达操作指令即可实现交互操作。

❹ python的用途和优点

python的用途:

python也是一门程序语言。能写各种各样的程序。

优点:

1.支持OOP编程 从根本

上讲Python仍是一种面向对象的语言,支持多态、继承等高级概念,在Python里使用OOP十分容易 没有C++、Java那样复杂,但不必做Python下OOp高手,够用即可。

2. 免费Python的使用是完全免费的,您可以从网络上免费下载、安装使用, Python上的其他程序包,也可下载安装使用。 Python的免费的同时又有很多的的社区对用户的提问提出快速的技术支持,学习和使用Python技术不再是一个人在战斗!

3. 可移植性 Python的实现是用ansi c编写的,可以运行在目前所有主流平台上,手机、pad上均可运行Python程序,其下的程序包也具有可移植性。

4. 功能强大 从特性的观点上看,Python是一个混合体,他丰富的工具集使得他介于传统的脚本语言和系统语言之间。

拓展资料:

设计定位

Python的设计哲学是"优雅"、"明确"、"简单"。因此,Perl语言中"总是有多种方法来做同一件事"的理念在Python开发者中通常是难以忍受的。Python开发者的哲学是"用一种方法,最好是只有一种方法来做一件事"。

在设计Python语言时,如果面临多种选择,Python开发者一般会拒绝花俏的语法,而选择明确的没有或者很少有歧义的语法。由于这种设计观念的差异,Python源代码通常被认为比Perl具备更好的可读性,并且能够支撑大规模的软件开发。这些准则被称为Python格言。在Python解释器内运行import this可以获得完整的列表。

Python开发人员尽量避开不成熟或者不重要的优化。一些针对非重要部位的加快运行速度的补丁通常不会被合并到Python内。所以很多人认为Python很慢。不过,根据二八定律,大多数程序对速度要求不高。在某些对运行速度要求很高的情况,Python设计师倾向于使用JIT技术,或者用使用C/C++语言改写这部分程序。可用的JIT技术是PyPy。

Python是完全面向对象的语言。函数、模块、数字、字符串都是对象。并且完全支持继承、重载、派生、多继承,有益于增强源代码的复用性。Python支持重载运算符和动态类型。相对于Lisp这种传统的函数式编程语言,Python对函数式设计只提供了有限的支持。有两个标准库(functools, itertools)提供了Haskell和Standard ML中久经考验的函数式程序设计工具。

虽然Python可能被粗略地分类为"脚本语言"(script language),但实际上一些大规模软件开发计划例如Zope、Mnet及BitTorrent,Google也广泛地使用它。Python的支持者较喜欢称它为一种高级动态编程语言,原因是"脚本语言"泛指仅作简单程序设计任务的语言,如shellscript、VBScript等只能处理简单任务的编程语言,并不能与Python相提并论。

Python本身被设计为可扩充的。并非所有的特性和功能都集成到语言核心。Python提供了丰富的API和工具,以便程序员能够轻松地使用C语言、C++、Cython来编写扩充模块。Python编译器本身也可以被集成到其它需要脚本语言的程序内。

因此,很多人还把Python作为一种"胶水语言"(glue language)使用。使用Python将其他语言编写的程序进行集成和封装。在Google内部的很多项目,例如Google Engine使用C++编写性能要求极高的部分,然后用Python或Java/Go调用相应的模块。



❺ python虚拟环境—virtual environment

操作系统:ubuntu16.04

举个例子,tensorflow(tf)是一个十分流行的python机器学习库,你现在手里有两个tf项目,其中项目A需要使用 python2.7 + f1.2 ,项目B需要使用 python2.7 + tf1.6 .这两个项目你得同时进行,怎么办?

愚蠢的办法是需要运行项目A时,将python2.7中的tf1.6卸载掉,安装tf1.2;需要运行项目B时,将python2.7中的tf1.2卸载掉,安装tf1.6。如果是单个模块还好,但是tf的不同版本又依赖于python中的其他已安装模块,而且tf1.2和tf1.6对依赖模块有不同的版本要求,那么转换一次得卸载安装好几个模块,是不是很爆炸?

课题组里几个同门共用一台服务器,每个人拥有一个系统账户,其中只有一个人拥有root权限,里面每个人都需要使用python跑程序,而且每个人对python版本以及python模块的版本都有不同需求,很多人又没有root权限,如何解决?

使用python的虚拟环境可以轻松解决上面的问题!

python虚拟环境是一个隔离/独立的python开发环境,和系统python环境可以完全隔离,互不相关,相当于多了一个python开发环境。而且你在python虚拟环境中的开发过程和使用系统python一模一样,你可以在你创建的python虚拟环境中使用pip工具安装任何你需要的模块,该模块和系统python环境完全不相关。虚拟环境的这个特点就能解决上面的问题了。

python有两个模块可以用于创建和管理python虚拟环境:

其中,venv模块在python3.3以上的版本可以使用,而virtualenv在python2.7+和python3.3+都可以使用。

默认的系统python中是没有安装以上两个工具的,需要使用以下命令安装:

安装好之后,就可以使用这两个工具安装python虚拟环境了。

我的系统python版本有python2.7和python3.5,虚拟环境的版本只能是系统中已有的python版本。使用virtualenv安装虚拟环境的命令如下:

什么参数都不指定的话,它会使用 /usr/bin/python 路径下的python解释器版本,即python2.7。因此会默认安装python2.7虚拟环境, /home/yan/env 表示虚拟环境的安装路径。

如果你要安装的是python3.5的虚拟环境,可以这样:

一般情况下,上面两条命令就够了,这样安装得到的python虚拟环境和系统python环境是完全隔离的。

更多的命令选项可以在命令行中直接输入 virtualenv 命令获取。

venv只有python3可以使用,因此只能创建python3的虚拟环境,创建命令如下:

其中, python3 -m venv 是死命令,最后的安装路径自己指定。

注意: 以上两种安装方式在安装虚拟环境的同时也自动安装了pip工具。

安装好虚拟环境之后,每次使用该虚拟环境前需要使用 source 命令 激活 它。假设前面我在 /home/yan/env3/ 目录下安装了python3.5的虚拟环境,现在我使用以下命令激活它:

激活之后,在命令行提示符前面会有 (env3) 的提示,表示当前你处的python虚拟环境,比如我电脑的情况:

现在你可以在激活环境中干任何事情,比如使用pip命令在你新的python虚拟环境中安装模块:

或者执行python脚本。

使用完该虚拟环境之后,你需要在命令行输入 deactivate 命令来 退出 该虚拟环境:

之后就回到了正常的系统python环境中。

由于你创建该虚拟环境的目的是为了跑某个项目的程序,现在该项目做完了,不需要该虚拟环境了,你可以把该虚拟环境直接删除,如何删?

直接将创建虚拟环境时生成的文件夹删掉,就这么简单。比如我要把我刚才创建的env3虚拟环境删除:

在删除虚拟环境前记得一定得先退出该虚拟环境。

python虚拟环境的好处是:每个虚拟环境之间,以及虚拟环境和系统环境之间是完全隔离的,不同虚拟环境中,你可以安装不同版本的模块,就仿佛你可以同时拥有N多个不同的python开发环境。

唯一麻烦的一点是:每次进入某个虚拟环境之前,都要使用 source 命令激活。每次使用完,都要使用 deactivate 命令退出。

❻ python 部署可以用虚拟环境吗

Python部署虚拟环境的利器——Virtualenv
virtualenv is a tool to create isolated Python environments.
virtualenv 是创建独立Python开发环境的工具,用于解决同一台机器上不同的Python工程的依赖、版本以及间接权限等问题。比如项目foo1依赖Django1.3,而项目foo2依赖Django1.7,而当前全局开发环境为Django1.8,版本的不同会导致项目所需包的版本不兼容等问题,使项目无法正常运行,使用virtualenv来创建相对独立的虚拟环境,可以很好的解决此类问题。此外,值得一提的是,对于项目打包迁移,如部署Web应用项目等应用场景,virtualenv都很有用武之地。
virtualenv创建一个拥有自己安装目录的环境, 这个环境不与其他虚拟环境共享库, 能够方便的管理python版本和管理python库。
下面介绍一下与使用Virtualenv相关的技巧。
1.安装Virtualenv
$ pip install virtualenv
//或者由于权限问题使用sudo临时提升权限
$ sudo pip install virtualenv

2.virtualenv创建虚拟环境
1 virtualenv ENV
2 #创建一个名为ENV的目录,并安装了ENV/bin/python
3 #创建了lib,include,bin目录,安装了pip

lib目录 : 所有安装的python库都会放在这个目录中的lib/pythonX.X/site-packages/中 ;
bin目录 : bin/python是当前虚拟环境使用的python解析器 ;
如果在命令行中运行virtualenv --system-site-packages ENV, 会继承/usr/lib/python3.6/site-packages下的所有库, 最新版本virtualenv把把访问全局site-packages作为默认行为
default behavior.
3.激活virtualenv
1 #ENV目录下使用如下命令
2 source ./bin/activate #激活当前virtualenv
3 #当用户名前面出现小括号括起来的虚拟环境名时,表明虚拟环境被成功激活

使用“pip list”指令可查看当前库
4.关闭virtualenv
deactivate

5.指定python版本
可使用-p PYTHON_EXE选项在创建虚拟环境的时候指定Python版本
1 #创建python2.7虚拟环境
2 virtualenv -p /usr/bin/python2.7 ENV2.7
3
4 #创建python3.4虚拟环境
5 virtualenv -p /usr/local/bin/python3.4 ENV3.4

这样可以解决不同项目python版本冲突以及和python库版本不兼容等问题。
6.生成可打包环境
某些特殊需求下,可能没有网络,我们希望直接打包一个ENV,解压后直接使用,这时候可以使用virtualenv --relocatable指令将ENV修改为可更改位置的ENV
#对当前已经创建的虚拟环境更改为可迁移
virtualenv --relocatable ./

7.获得帮助
virtualenv -h

❼ python3.6与3.9有什么区别

python3.9相对于3.6更新了一些新的功能,比如字典更新和合并,基于PEG的高性能解析器,3.9提议用高性能和稳定的基于PEG的解析器替换当前基于LL(1)的Python解析器。

相关内容

Python的设计哲学是“优雅”、“明确”、“简单”。因此,Perl语言中“总是有多种方法来做同一件事”的理念在Python开发者中通常是难以忍受的。Python开发者的哲学是“用一种方法,最好是只有一种方法来做一件事”。

在设计Python语言时,如果面临多种选择,Python开发者一般会拒绝花俏的语法,而选择明确的没有或者很少有歧义的语法。由于这种设计观念的差异,Python源代码通常被认为比Perl具备更好的可读性,并且能够支撑大规模的软件开发。这些准则被称为Python格言。在Python解释器内运行import this可以获得完整的列表。





❽ 学python必须装虚拟机吗

虽然,在windows上也是可以运行Python程序的(安装python解释器后),但是绝大多数的python程序都是跑在Linux机器上的,所以我们需要配置一台pnux虚拟机。以前,有人想在本地(也就是物理机)上装双系统,但是pnux的图形化界面是和内核区分开来的,没有图形桌面,pnux的所有功能照样能使用。(推荐学习:Python视频教程)
主要区别
pnux的图形桌面没有windows人性化,功能没Windows的好。
pnux的图形化界面是和内核区分开来的,windows的图形桌面是和内核紧密结合在一起的。
现在流行的大多数软件都跑在windows上,就算有pnux版本的,也是容易出问题的。
所以现在好的方法是:使用pnux虚拟机,这样可以随时和windows系统进行切换,在网上查资料,qq聊天,做笔记这些都在windows上操作,在pnux上跑python程序。
如果是早些年,可能不容易实现,但是现在可以虚拟化技术来实现,现在主流的虚拟化产品有三种,这里我就介绍下VMware。
vmware这款软件跑在本地的操作系统上(我的是win10),然后我们可以在这款软件上安装各种各样的虚拟机。
虚拟化软件就像一层薄薄的操作系统,可以直接运行在硬件上,将来可能会取代我们今天使用的操作系统。说远了,具体的安装过程我就不说了,在网上可以找到很多教程。
VMware:做为业内虚拟化领先的厂商VMware公司,一直以其易用性和管理性得到了大家的认同。只是受其架构的影响限制,VMware还主要是在X86平台服务器上有较大优势,而非真正的IT信息虚拟化。
加上,其本身只是软件方案解决商,而非像IBM与微软这样拥用各自己阵地用户基础的厂商。所以当前,对于VMware公司来说将面临着多方面的挑战,这其中包括微软、XenSource(被Citrix购得)以及Parallels、IBM公司。
所以,未来对于VMware公司来说这条道虚拟化之道能否继续顺风顺水下去还真不好说。
更多Python相关技术文章,请访问Python教程栏目进行学习!以上就是小编分享的关于学python必须装虚拟机吗的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!

❾ Python 常用的标准库以及第三方库有哪些

Python常用库大全,看看有没有你需要的。
环境管理
管理 Python 版本和环境的工具
p – 非常简单的交互式 python 版本管理工具。
pyenv – 简单的 Python 版本管理工具。
Vex – 可以在虚拟环境中执行命令。
virtualenv – 创建独立 Python 环境的工具。
virtualenvwrapper- virtualenv 的一组扩展。
包管理
管理包和依赖的工具。
pip – Python 包和依赖关系管理工具。
pip-tools – 保证 Python 包依赖关系更新的一组工具。
conda – 跨平台,Python 二进制包管理工具。
Curdling – 管理 Python 包的命令行工具。
wheel – Python 分发的新标准,意在取代 eggs。
包仓库
本地 PyPI 仓库服务和代理。
warehouse – 下一代 PyPI。
Warehousebandersnatch – PyPA 提供的 PyPI 镜像工具。
devpi – PyPI 服务和打包/测试/分发工具。
localshop – 本地 PyPI 服务(自定义包并且自动对 PyPI 镜像)。
分发
打包为可执行文件以便分发。
PyInstaller – 将 Python 程序转换成独立的执行文件(跨平台)。
dh-virtualenv – 构建并将 virtualenv 虚拟环境作为一个 Debian 包来发布。
Nuitka – 将脚本、模块、包编译成可执行文件或扩展模块。
py2app – 将 Python 脚本变为独立软件包(Mac OS X)。
py2exe – 将 Python 脚本变为独立软件包(Windows)。
pynsist – 一个用来创建 Windows 安装程序的工具,可以在安装程序中打包 Python本身。
构建工具
将源码编译成软件。
buildout – 一个构建系统,从多个组件来创建,组装和部署应用。
BitBake – 针对嵌入式 Linux 的类似 make 的构建工具。
fabricate – 对任何语言自动找到依赖关系的构建工具。
PlatformIO – 多平台命令行构建工具。
PyBuilder – 纯 Python 实现的持续化构建工具。
SCons – 软件构建工具。
交互式解析器
交互式 Python 解析器。
IPython – 功能丰富的工具,非常有效的使用交互式 Python。
bpython- 界面丰富的 Python 解析器。
ptpython – 高级交互式Python解析器, 构建于python-prompt-toolkit 之上。
文件
文件管理和 MIME(多用途的网际邮件扩充协议)类型检测。
imghdr – (Python 标准库)检测图片类型。
mimetypes – (Python 标准库)将文件名映射为 MIME 类型。
path.py – 对 os.path 进行封装的模块。
pathlib – (Python3.4+ 标准库)跨平台的、面向对象的路径操作库。
python-magic- 文件类型检测的第三方库 libmagic 的 Python 接口。
Unipath- 用面向对象的方式操作文件和目录
watchdog – 管理文件系统事件的 API 和 shell 工具
日期和时间
操作日期和时间的类库。
arrow- 更好的 Python 日期时间操作类库。
Chronyk – Python 3 的类库,用于解析手写格式的时间和日期。
dateutil – Python datetime 模块的扩展。
delorean- 解决 Python 中有关日期处理的棘手问题的库。
moment – 一个用来处理时间和日期的Python库。灵感来自于Moment.js。
PyTime – 一个简单易用的Python模块,用于通过字符串来操作日期/时间。
pytz – 现代以及历史版本的世界时区定义。将时区数据库引入Python。
when.py – 提供用户友好的函数来帮助用户进行常用的日期和时间操作。
文本处理
用于解析和操作文本的库。
通用
chardet – 字符编码检测器,兼容 Python2 和 Python3。
difflib – (Python 标准库)帮助我们进行差异化比较。
ftfy – 让Unicode文本更完整更连贯。
fuzzywuzzy – 模糊字符串匹配。
Levenshtein – 快速计算编辑距离以及字符串的相似度。
pangu.py – 在中日韩语字符和数字字母之间添加空格。
pyfiglet -figlet 的 Python实现。
shortuuid – 一个生成器库,用以生成简洁的,明白的,URL 安全的 UUID。
unidecode – Unicode 文本的 ASCII 转换形式 。
uniout – 打印可读的字符,而不是转义的字符串。
xpinyin – 一个用于把汉字转换为拼音的库。

阅读全文

与数字虚拟相关器python相关的资料

热点内容
苹果平板如何开启隐私单个app 浏览:702
空调压缩机一开就停止 浏览:526
如何下载虎牙app 浏览:847
日语年号的算法 浏览:955
dev里面的编译日志咋调出来 浏览:298
php函数引用返回 浏览:816
文件夹和文件夹的创建 浏览:259
香港加密货币牌照 浏览:838
程序员鼓励自己的代码 浏览:393
计算机网络原理pdf 浏览:752
吃鸡国际体验服为什么服务器繁忙 浏览:94
php中sleep 浏览:490
vr怎么看视频算法 浏览:86
手机app如何申报个人所得税零申报 浏览:694
如何截获手机app连接的ip 浏览:331
冰箱压缩机是否需要电容 浏览:346
python列表每一行数据求和 浏览:274
自己有一台服务器可以玩什么 浏览:657
社会学波普诺pdf 浏览:584
解压做食物的小视频 浏览:759