A. python绘图Turtle库详解
Turtle库是Python语言中一个很流行的绘制图像的函数库,想象一个小乌龟,在一个横轴为x、纵轴为y的坐标系原点,(0,0)位置开始,它根据一组函数指令的控制,在这个平面坐标系中移动,从而在它爬行的路径上绘制了图形。
turtle 绘图的基础知识:
1. 画布(canvas)
画布就是turtle为我们展开用于绘图区域,我们可以设置它的大小和初始位置。
设置画布大小
turtle.screensize(canvwidth=None, canvheight=None, bg=None),参数分别为画布的宽(单位像素), 高, 背景颜色。
如:turtle.screensize(800,600, "green")
turtle.screensize() #返回默认大小(400, 300)
turtle.setup(width=0.5, height=0.75,
startx=None, starty=None),参数:width, height: 输入宽和高为整数时, 表示像素; 为小数时, 表示占据电脑屏幕的比例,(startx, starty): 这一坐标表示矩形窗口左上角顶点的位置, 如果为空,则窗口位于屏幕中心。
如:turtle.setup(width=0.6,height=0.6)
turtle.setup(width=800,height=800, startx=100, starty=100)
2. 画笔
2.1 画笔的状态
在画布上,默认有一个坐标原点为画布中心的坐标轴,坐标原点上有一只面朝x轴正方向小乌龟。这里我们描述小乌龟时使用了两个词语:坐标原点(位置),面朝x轴正方向(方向), turtle绘图中,就是使用位置方向描述小乌龟(画笔)的状态。
2.2 画笔的属性
画笔(画笔的属性,颜色、画线的宽度等)
1) turtle.pensize():设置画笔的宽度;
2) turtle.pencolor():没有参数传入,返回当前画笔颜色,传入参数设置画笔颜色,可以是字符串如"green", "red",也可以是RGB 3元组。
3) turtle.speed(speed):设置画笔移动速度,画笔绘制的速度范围[0,10]整数,数字越大越快。
2.3 绘图命令
操纵海龟绘图有着许多的命令,这些命令可以划分为3种:一种为运动命令,一种为画笔控制命令,还有一种是全局控制命令。
(1) 画笔运动命令
命令说明
turtle.forward(distance)向当前画笔方向移动distance像素长度
turtle.backward(distance)向当前画笔相反方向移动distance像素长度
turtle.right(degree)顺时针移动degree°
turtle.left(degree)逆时针移动degree°
turtle.pendown()移动时绘制图形,缺省时也为绘制
turtle.goto(x,y)将画笔移动到坐标为x,y的位置
turtle.penup()提起笔移动,不绘制图形,用于另起一个地方绘制
turtle.circle()画圆,半径为正(负),表示圆心在画笔的左边(右边)画圆
setx( )将当前x轴移动到指定位置
sety( )将当前y轴移动到指定位置
setheading(angle)设置当前朝向为angle角度
home()设置当前画笔位置为原点,朝向东。
dot(r)绘制一个指定直径和颜色的圆点
(2) 画笔控制命令
命令说明
turtle.fillcolor(colorstring)绘制图形的填充颜色
turtle.color(color1, color2)同时设置pencolor=color1, fillcolor=color2
turtle.filling()返回当前是否在填充状态
turtle.begin_fill()准备开始填充图形
turtle.end_fill()填充完成
turtle.hideturtle()隐藏画笔的turtle形状
turtle.showturtle()显示画笔的turtle形状
(3) 全局控制命令
命令说明
turtle.clear()清空turtle窗口,但是turtle的位置和状态不会改变
turtle.reset()清空窗口,重置turtle状态为起始状态
turtle.undo()撤销上一个turtle动作
turtle.isvisible()返回当前turtle是否可见
stamp()复制当前图形
turtle.write(s
[,font=("font-name",font_size,"font_type")])
写文本,s为文本内容,font是字体的参数,分别为字体名称,大小和类型;font为可选项,font参数也是可选项
(4) 其他命令
命令说明
turtle.mainloop()或turtle.done()启动事件循环 -调用Tkinter的mainloop函数。
必须是乌龟图形程序中的最后一个语句。
turtle.mode(mode=None)设置乌龟模式(“standard”,“logo”或“world”)并执行重置。如果没有给出模式,则返回当前模式。
模式初始龟标题正角度
standard向右(东)逆时针
logo向上(北)顺时针
turtle.delay(delay=None)设置或返回以毫秒为单位的绘图延迟。
turtle.begin_poly()开始记录多边形的顶点。当前的乌龟位置是多边形的第一个顶点。
turtle.end_poly()停止记录多边形的顶点。当前的乌龟位置是多边形的最后一个顶点。将与第一个顶点相连。
turtle.get_poly()返回最后记录的多边形。
B. 用Python画图
今天开始琢磨用Python画图,没使用之前是一脸懵的,我使用的开发环境是Pycharm,这个输出的是一行行命令,这个图画在哪里呢?
搜索之后发现,它会弹出一个对话框,然后就开始画了,比如下图
第一个常用的库是Turtle,它是Python语言中一个很流行的绘制图像的函数库,这个词的意思就是乌龟,你可以想象下一个小乌龟在一个x和y轴的平面坐标系里,从原点开始根据指令控制,爬行出来就是绘制的图形了。
它最常用的指令就是旋转和移动,比如画个圆,就是绕着圆心移动;再比如上图这个怎么画呢,其实主要就两个命令:
turtle.forward(200)
turtle.left(170)
第一个命令是移动200个单位并画出来轨迹
第二个命令是画笔顺时针转170度,注意此时并没有移动,只是转角度
然后呢? 循环重复就画出来这个图了
好玩吧。
有需要仔细研究的可以看下这篇文章 https://blog.csdn.net/zengxiantao1994/article/details/76588580 ,这个牛人最后用这个库画个移动的钟表,太赞了。
Turtle虽好玩,但是我想要的是我给定数据,然后让它画图,这里就找到另一个常用的画图的库了。
Matplotlib是python最着名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图。其中,matplotlib的pyplot模块一般是最常用的,可以方便用户快速绘制二维图表。
使用起来也挺简单,
首先import matplotlib.pyplot as plt 导入画图的图。
然后给定x和y,用这个命令plt.plot(x, y)就能画图了,接着用plt.show()就可以把图形展示出来。
接着就是各种完善,比如加标题,设定x轴和y轴标签,范围,颜色,网格等等,在 https://blog.csdn.net/guoziqing506/article/details/78975150 这篇文章里介绍的很详细。
现在互联网的好处就是你需要什么内容,基本上都能搜索出来,而且还是免费的。
我为什么要研究这个呢?当然是为了用,比如我把比特币的曲线自己画出来可好?
假设现在有个数据csv文件,一列是日期,另一列是比特币的价格,那用这个命令画下:
这两列数据读到pandas中,日期为df['time']列,比特币价格为df['ini'],那我只要使用如下命令
plt.plot(df['time'], df['ini'])
plt.show()
就能得到如下图:
自己画的是不是很香,哈哈!
然后呢,我在上篇文章 https://www.jianshu.com/p/d4013d8a73de 中介绍过求Ahr999指数,那可不可以也放到这张图中呢?不就是加一条命令嘛
plt.plot(df['time'], df['Ahr999'])
图形如下:
但是,Ahr999指数怎么就一条线不动啊, 原来两个Y轴不一致,显示出来太怪了,需要用多Y轴,问题来了。
继续谷歌一下,把第二个Y轴放右边就行了,不过呢得使用多图,重新绘制
fig = plt.figure() # 多图
ax1 = fig.add_subplot(111)
ax1.plot(df['time'], df['ini'], label="BTC price") # 绘制第一个图比特币价格
ax1.set_ylabel('BTC price') # 加上标签
# 第二个直接对称就行了
ax2 = ax1.twinx()# 在右边增加一个Y轴
ax2.plot(df['time'], df['Ahr999'], 'r', label="ahr999") # 绘制第二个图Ahr999指数,红色
ax2.set_ylim([0, 50])# 设定第二个Y轴范围
ax2.set_ylabel('ahr999')
plt.grid(color="k", linestyle=":")# 网格
fig.legend(loc="center")#图例
plt.show()
跑起来看看效果,虽然丑了点,但终于跑通了。
这样就可以把所有指数都绘制到一张图中,等等,三个甚至多个Y轴怎么加?这又是一个问题,留给爱思考爱学习的你。
有了自己的数据,建立自己的各个指数,然后再放到图形界面中,同时针对异常情况再自动进行提醒,比如要抄底了,要卖出了,用程序做出自己的晴雨表。
C. 用python代码绘图
python中subplot的用法
subplot是python中子图的绘制,这里主要介绍如何排布子图与极坐标图的绘制。
具体用法,需要搜索网上内容,再结合自己的情况修改参数即可。
D. 怎样用python画图,为什么代码写好运行时错误
python绘图(可视化)的模块非常多,下面我简单介绍几个不错的绘图库,感兴趣的朋友可以自己尝试一下,实验环境win7+python3.6+pycharm5.0,主要内容如下:
matplotlib
这是python中专门用于绘图的一个模块,功能强大,制图种类繁多,使用也最广泛,下面我简单介绍一下这个模块的安装和使用:
1.首先,安装matplotlib模块,这个直接在cmd窗口输入安装命令“pip install matplotlib”就行,如下:
2.安装完成后,我们就可以编写代码进行一下简单测试了,代码如下,一个稍微复杂的曲线图:
程序运行效果如下,看着还是非常不错的:
3.更多示例的话,可以参考一下官网教程,介绍的非常详细,柱状图、散点图、饼图等都有,非常适合初学者学习入门:
seaborn
这是一个基于matplotlib的绘图库,是matplotlib的高级封装,代码量更少,使用起来也更方便,下面我简单介绍一下这个模块的安装和使用:
1.首先,安装seaborn模块,这个也直接输入安装命令“pip install seaborn”就行,如下,很快就能安装完成:
2.安装完成后,我们就可以直接编写代码来测试一下这个模块了,代码如下,一个折线图集合:
程序运行截图如下,效果也非常不错:
3.更多示例的话,也直接参考官网教程就行,介绍的非常详细,很适合初学者入门学习:
pyecharts
这是echarts的一个python接口,借助于echarts强大的可视化功能,python也可以快速构建、绘制各种各样的图表,下面我简单介绍一下这个模块的安装和使用:
1.首先,安装pyecharts模块,这个也直接输入命令“pip install pyecharts”就行,如下:
2.安装完成后,我们就可以编写代码来进行下测试了,测试代码如下,一个简单的3D散点图:
程序运行截图如下(基于浏览器进行显示),效果还是非常不错的:
至此,我们就完成了利用python来进行绘图(可视化)。总的来说,这3个绘图模块使用起来都非常不错,对于大多数图表绘制来说,完全可以满足需求,当然,还有许多其他绘图模块,像ggplot等,也都非常不错,网上也有相关教程,感兴趣的话,可以搜一下,希望以上分享的内容能对你有所帮助吧,也欢迎大家评论、留言进行补充。
python画图有很多扩展可以用,比如matplotlib、turtle、pychart等等,看你需要什么方面了,不同的需求需要用不同的工具。如果做界面还有pyqt、tkinter等等,做 游戏 还有pygame等等。
python报错需要查看报错信息,进行调试才能正常运行
E. python绘图工具turtle库的使用
#PythonDraw.py
import turtle #导入turtle库
turtle.setup(650, 350, 200, 200) #设置画布大小和位置
turtle.penup() #抬起画笔
turtle.fd(-250) #画笔在空中向前飞行-250个像素
turtle.pendown() #画笔落下
turtle.pensize(25) #画笔宽度25个像素
turtle.pencolor("purple") #画笔颜色为紫色
turtle.seth(-40) #海龟方向香油转动45度,但是不行进
for i in range(4): #这里是一个循环
turtle.circle(40, 80) #绕着左边40远处的点向转80度
turtle.circle(-40, 80) #绕着右边40远处的点向转80度
turtle.circle(40, 80/2) #绕着左边40远处的点向转80/2度
turtle.fd(40) #向前40个像素
turtle.circle(16, 180) #绕着左边16远处的点向转180度
turtle.fd(40 * 2/3) #向前40*2/3个像素
turtle.done() #运行完不退出
1.turtle库基本介绍
有一只海龟,其在窗体正中心,在画布上游走,走过的轨迹形成了绘制的图形, 海龟由程序控制,可以变换颜色、改变宽度等。
2.turtle库绘图窗体布局
不设置位置,默认在屏幕中心显示
3.turtle库空间坐标体系
绝对坐标,可以使用goto函数到达指定位置
例如:
4.turtle库角度坐标体系
5.RGB色彩体系
F. Python 中的可视化工具介绍
几周前,R语言社区经历了一场关于画图工具的讨论。对于我们这种外人来说,具体的细节并不重要,但是我们可以将一些有用的观点运用到 Python 中。讨论的重点是 R 语言自带的绘图工具 base R 和 Hadley Wickham 开发的绘图工具 ggplot2 之间的优劣情况。如果你想了解更多细节内容,请阅读以下几篇文章:
其中最重要的两个内容是:
不是所有人都认同第二个观点,ggplot2确实无法绘制出所有的图表类型,但是我会利用它来做分析。
以下是 2016 年 4 月写的关于绘图工具的概述。出于多方面的原因,绘图工具的选取更多地取决于个人偏好,因此本文介绍的 Python 绘图工具也仅代表我的个人使用偏好。
Matplotlib 是一个强大的工具,它是 Pandas' builtin-plotting 和 Seaborn 的基础。 Matplotlib 能够绘制许多不同的图形,还能调用多个级别的许多 API 。我发现 pyplot api 非常好用,你可能用不上 Transforms 或者 artists ,但是如果你有需求的话可以查阅帮助文档。我将从 pandas 和 seaborn 图开始介绍,然后介绍如何调用 pyplot 的 API 。
DataFrame 和 Series 拥有 .plot 的命名空间,其中有许多图形类别可供选择(line, hist, scatter, 等等)。 Pandas 对象还提供了额外的用于增强图形展现效果的数据,如索引变量。
由于 pandas 具有更少的向后兼容的限制,所以它具有更好的美学特性。从这方面来说,我认为 pandas 中的 DataFrame.plot 是一个非常实用的快速探索性分析的工具。
Michael Waskom 所开发的 Seaborn 提供了一个高层次的界面来绘制更吸引人统计图形。 Seaborn 提供了一个可以快速探索分析数据不同特征的 API 接口,接下来我们将重点介绍它。
Bokeh 是一款针对浏览器开发的可视化工具。
和 matplotlib 一样,**Bokeh
** 拥有一系列 API 接口。比如 glpyhs 接口,该接口和 matplotllib 中的 Artists 接口非常相似,它主要用于绘制环形图、方形图和多边形图等。最近 Bokeh 又开放了一个新的图形接口,该接口主要用于处理词典数据或 DataFrame 数据,并用于绘制罐头图。
以下是一些本文没有提到的可视化工具:
我们将利用 ggplot2 中的 diamonds 数据集,你可以在 Vincent Arelbundock's RDatasets 中找到它(pd.read_csv(' http://vincentarelbundock.github.io/Rdatasets/csv/ggplot2/diamonds.csv') ),此外我们还需要检测是否已经安装 feather 。
[站外图片上传中……(4)]
Bokeh 提供了两个 API,一个是低级的 glyph API,另一个是高级的 Charts API。
[站外图片上传中……(5)]
还不是很清楚我们应该在啥时候利用 Bokeh 来进行探索性分析,不过它的交互式功能可以激发我的兴趣。就个人而言,由于习惯问题我平时仍然一直使用 matplotlib 来绘图,我还无法完全切换到 Bokeh 中。
我非常喜欢 Bokeh 的仪表盘功能和 bokeh server 的 webapps。
[站外图片上传中……(6)]
[站外图片上传中……(7)]
[站外图片上传中……(8)]
matplotlib 并不局限于处理 DataFrame 数据,它支持所有使用 getitem 作为键值的数据类型。
[站外图片上传中……(9)]
[站外图片上传中……(10)]
我们从列变量的名字中提取出轴标签,利用 Pandas 可以更加便捷地绘制一系列共享 x 轴数据的图形。
[站外图片上传中……(11)]
[站外图片上传中……(12)]
本文中的剩余部分将重点介绍 seaborn和为什么我认为它是探索性分析的强大工具。
我强烈建议你阅读 Seaborn 的 introctory notes,这上面介绍了 seaborn 的设计逻辑和应用领域。
我们可以通过一个稳定的且易懂的 API 接口来调用 Seaborn。
事实上,seaborn 是基于 matplotlib 开发的,这意味着如果你熟悉 pyplot API的话,那么你可以很容易地掌握 seaborn。
大多数 seaborn 绘图函数的参数都由 x, y, hue, 和 data 构成(并不是所有的参数都是必须的)。如果你处理的对象是 DataFrame,那么你可以直接将列变量的名称和数据集的名称一同传递到绘图函数中。
[站外图片上传中……(13)]
[站外图片上传中……(14)]
[站外图片上传中……(15)]
[站外图片上传中……(16)]
我们可以很轻易地探究两个变量之间的关系:
[站外图片上传中……(17)]
[站外图片上传中……(18)]
或者一次探究多个变量之间的关系:
[站外图片上传中……(19)]
[站外图片上传中……(20)]
pariplot 是 PairGrid 的一个包装函数,它提供了 seaborn 一个重要的抽象功能——Grid。Seaborn 的 Grid 将 matplotlib 中Figure 和数据集中的变量联系起来了。
我们有两种方式可以和 grids 进行交互操作。其一,seaborn 提供了类似于 pairplot 的包装函数,它提前设置了许多常见任务的参数;其二,如果你需要更多的自定义选项,那么你可以直接利用 Grid 方法。
[站外图片上传中……(21)]
[站外图片上传中……(22)]
[站外图片上传中……(23)]
34312 rows × 7 columns
[站外图片上传中……(24)]
[站外图片上传中……(25)]
FaceGrid 可以通过控制分面变量来生成 Grid图形,其中PairGrid是它的一个特例。接下来的案例中,我们将以数据集中的 cut 变量为分面变量来绘制图像:
[站外图片上传中……(26)]
[站外图片上传中……(27)]
最后一个案例展示了如何将 seaborn 和 matplotlib 结合起来。g.axes是matplotlib.Axes的一个数组,g.fig是matplotlib.Figure的一个特例。这是使用 seaborn 时常见的一个模式:利用 seaborn 的方法来绘制图像,然后再利用 matplotlib 来调整细节部分。
我认为 seaborn 之所以吸引人是因为它的绘图语法具有很强的灵活性。你不会被作者所设定的图表类型所局限住,你可以根据自己的需要创建新的图表。
[站外图片上传中……(28)]
[站外图片上传中……(29)]
[站外图片上传中……(30)]
[站外图片上传中……(31)]
本来,我打算准备更多的例子来介绍 seaborn,但是我会将相关链接分享给大家。Seaborn 的说明文档写的非常详细。
最后,我们将结合 scikit-learn 来介绍如何利用 GridSearch 来寻找最佳参数。
[站外图片上传中……(32)]
[站外图片上传中……(33)]
[站外图片上传中……(34)]
原文链接: http://tomaugspurger.github.io/modern-6-visualization.html
译者:Fibears
G. python的作图包有哪些
1. matplotlib
该python绘图包与matlab的绘图功能类似
2. seaborn
用来进行统计数据可视化的工具包,绘制的图像非常漂亮,该python package也是基于matplotlib的,是纯粹由python开发的
H. 无所不能的python编程是怎么快速画图的呢
python绘图工具有很多,常用的turtle海龟绘图体系,只要引入import
turtle就可以无需安装