导航:首页 > 编程语言 > lstmpython库

lstmpython库

发布时间:2023-02-04 02:08:46

1. python 时间序列模型中forecast和predict的区别

举例说明,2017.01.01-.017.12.31的周期为12的月度数据中,用ARIMA拟合得到模型model。
model.get_prediction(start='2017.09.01')则得到用拟合模型计算出来的样本内2017.09.01-2017.12.31的预测值;
model.get_forcast(step=5)则得到样本外推5期即2018.01.01-2018.05.31五个月的预测值;
注:
model.get_prediction也可做外推值的预测,设定好具体终止周期即可。

2. 用Python和Keras做LSTM神经网络普通电脑可以吗

你好,如果数据量不大的话,普通电脑可以的。如果数据量很大,建议使用云计算资源。
望采纳。

3. 现在tensorflow和mxnet很火,是否还有必要学习scikit-learn等框架

很有必要,但不用太深入,在Kaggle上认真搞2,3个比赛能进10%的程度就够了

4. 如何在python中用lstm网络进行时间序列预测

时间序列建模器 图表那个选项卡 左下勾选 拟合值 就可以了。我的为什么不出现预测值啊啊啊啊~~

5. 学习python的话大概要学习哪些内容

想要学习Python,需要掌握的内容还是比较多的,对于自学的同学来说会有一些难度,不推荐自学能力差的人。我们将学习的过程划分为4个阶段,每个阶段学习对应的内容,具体的学习顺序如下:

Python学习顺序:

①Python软件开发基础

想要系统学习,你可以考察对比一下开设有IT专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能,南京北大青鸟、中博软件学院、南京课工场等都是不错的选择,建议实地考察对比一下。

祝你学有所成,望采纳。

6. Python的深度学习框架有哪些

中公教育联合中科院专家打造的深度学习分八个阶段进行学习:

第一阶段AI概述及前沿应用成果介绍

详情查看深度学习。

7. LSTM模型预测cos函数

python3.6.7、tensorflow1.4.0

这里用numpy对cos函数进行间隔采样,取10000个点作为训练数据,再接着取1000个点作为测试数据。对于取出的数据,放入一个数组中,即一个离散的cos函数的序列,对于这个序列,取对应的点作为输出y,再对应地取点前面的10个点作为此点对应的输入X,即在此时刻根据这10个点X来预测对应的一个点y,自定义一个函数generate_data来完成从序列中生成输入数据X和输出数据y的功能。

这里的模型采用了一个两层LSTM模型,隐藏结点设为30个,最后在LSTM模型后设定了一个全连接层,输出预测结果。训练次数设定为5000次,训练开始前根据初始的参数观察模型在测试集上的预测结果,经过5000次训练后再观察模型在测试集上的预测结果,进行对比。

从输出的图像上可以看到,没有训练之前,测试集的数据经过模型输出的结果均在初始值0.0附近,和正确的cos函数图像丝毫不吻合。在经过5000次训练之后,可以看到测试集经过模型输出的预测结果和正确结果之间的均方差大有下降,在图上可视化的结果也可以看到预测值和正确值的图像高度吻合。

8. python如何预测下一年的数据

顾名思义,时间序列数据是一种随时间变化的数据类型。例如,24小时内的温度,一个月内各种产品的价格,一年中特定公司的股票价格。诸如长期短期记忆网络(LSTM)之类的高级深度学习模型能够捕获时间序列数据中的模式,因此可用于对数据的未来趋势进行预测。在本文中,您将看到如何使用LSTM算法使用时间序列数据进行将来的预测。

9. python lstm怎么加入特征

LSTM是啥,Long Short Term Memory?弄神经网络除非你有绝对自信还是用Python吧。

10. 如何在Python中用LSTM网络进行时间序列预测

时间序列模型

时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征。这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的。
举个栗子:根据过去两年某股票的每天的股价数据推测之后一周的股价变化;根据过去2年某店铺每周想消费人数预测下周来店消费的人数等等

RNN 和 LSTM 模型

时间序列模型最常用最强大的的工具就是递归神经网络(recurrent neural network, RNN)。相比与普通神经网络的各计算结果之间相互独立的特点,RNN的每一次隐含层的计算结果都与当前输入以及上一次的隐含层结果相关。通过这种方法,RNN的计算结果便具备了记忆之前几次结果的特点。

典型的RNN网路结构如下:

4. 模型训练和结果预测
将上述数据集按4:1的比例随机拆分为训练集和验证集,这是为了防止过度拟合。训练模型。然后将数据的X列作为参数导入模型便可得到预测值,与实际的Y值相比便可得到该模型的优劣。

实现代码

  • 时间间隔序列格式化成所需的训练集格式

  • import pandas as pdimport numpy as npdef create_interval_dataset(dataset, look_back):

  • """ :param dataset: input array of time intervals :param look_back: each training set feature length :return: convert an array of values into a dataset matrix. """

  • dataX, dataY = [], [] for i in range(len(dataset) - look_back):

  • dataX.append(dataset[i:i+look_back])

  • dataY.append(dataset[i+look_back]) return np.asarray(dataX), np.asarray(dataY)


  • df = pd.read_csv("path-to-your-time-interval-file")

  • dataset_init = np.asarray(df) # if only 1 columndataX, dataY = create_interval_dataset(dataset, lookback=3) # look back if the training set sequence length

  • 这里的输入数据来源是csv文件,如果输入数据是来自数据库的话可以参考这里

  • LSTM网络结构搭建

  • import pandas as pdimport numpy as npimport randomfrom keras.models import Sequential, model_from_jsonfrom keras.layers import Dense, LSTM, Dropoutclass NeuralNetwork():

  • def __init__(self, **kwargs):

  • """ :param **kwargs: output_dim=4: output dimension of LSTM layer; activation_lstm='tanh': activation function for LSTM layers; activation_dense='relu': activation function for Dense layer; activation_last='sigmoid': activation function for last layer; drop_out=0.2: fraction of input units to drop; np_epoch=10, the number of epoches to train the model. epoch is one forward pass and one backward pass of all the training examples; batch_size=32: number of samples per gradient update. The higher the batch size, the more memory space you'll need; loss='mean_square_error': loss function; optimizer='rmsprop' """

  • self.output_dim = kwargs.get('output_dim', 8) self.activation_lstm = kwargs.get('activation_lstm', 'relu') self.activation_dense = kwargs.get('activation_dense', 'relu') self.activation_last = kwargs.get('activation_last', 'softmax') # softmax for multiple output

  • self.dense_layer = kwargs.get('dense_layer', 2) # at least 2 layers

  • self.lstm_layer = kwargs.get('lstm_layer', 2) self.drop_out = kwargs.get('drop_out', 0.2) self.nb_epoch = kwargs.get('nb_epoch', 10) self.batch_size = kwargs.get('batch_size', 100) self.loss = kwargs.get('loss', 'categorical_crossentropy') self.optimizer = kwargs.get('optimizer', 'rmsprop') def NN_model(self, trainX, trainY, testX, testY):

  • """ :param trainX: training data set :param trainY: expect value of training data :param testX: test data set :param testY: epect value of test data :return: model after training """

  • print "Training model is LSTM network!"

  • input_dim = trainX[1].shape[1]

  • output_dim = trainY.shape[1] # one-hot label

  • # print predefined parameters of current model:

  • model = Sequential() # applying a LSTM layer with x dim output and y dim input. Use dropout parameter to avoid overfitting

  • model.add(LSTM(output_dim=self.output_dim,

  • input_dim=input_dim,

  • activation=self.activation_lstm,

  • dropout_U=self.drop_out,

  • return_sequences=True)) for i in range(self.lstm_layer-2):

  • model.add(LSTM(output_dim=self.output_dim,

  • input_dim=self.output_dim,

  • activation=self.activation_lstm,

  • dropout_U=self.drop_out,

  • return_sequences=True)) # argument return_sequences should be false in last lstm layer to avoid input dimension incompatibility with dense layer

  • model.add(LSTM(output_dim=self.output_dim,

  • input_dim=self.output_dim,

  • activation=self.activation_lstm,

  • dropout_U=self.drop_out)) for i in range(self.dense_layer-1):

  • model.add(Dense(output_dim=self.output_dim,

  • activation=self.activation_last))

  • model.add(Dense(output_dim=output_dim,

  • input_dim=self.output_dim,

  • activation=self.activation_last)) # configure the learning process

  • model.compile(loss=self.loss, optimizer=self.optimizer, metrics=['accuracy']) # train the model with fixed number of epoches

  • model.fit(x=trainX, y=trainY, nb_epoch=self.nb_epoch, batch_size=self.batch_size, validation_data=(testX, testY)) # store model to json file

  • model_json = model.to_json() with open(model_path, "w") as json_file:

  • json_file.write(model_json) # store model weights to hdf5 file

  • if model_weight_path: if os.path.exists(model_weight_path):

  • os.remove(model_weight_path)

  • model.save_weights(model_weight_path) # eg: model_weight.h5

  • return model

  • 这里写的只涉及LSTM网络的结构搭建,至于如何把数据处理规范化成网络所需的结构以及把模型预测结果与实际值比较统计的可视化,就需要根据实际情况做调整了。

    阅读全文

    与lstmpython库相关的资料

    热点内容
    php内核源码入口 浏览:910
    java内存图片 浏览:227
    电器原理pdf 浏览:273
    谷歌注册无法连接网络连接服务器地址 浏览:428
    在识货app上怎么联系客服 浏览:470
    javac数据类型 浏览:480
    kmp算法算法导论 浏览:193
    单反照片批量压缩 浏览:340
    javazip压缩目录 浏览:712
    89c52单片机晶振 浏览:206
    pdf转jpgmac 浏览:799
    65压缩机多少钱 浏览:120
    同类型服务app如何脱颖而出 浏览:762
    mtm月线金叉选股预警公式源码 浏览:227
    javasapwebservice 浏览:709
    程序员老了去做什么 浏览:404
    linux小括号 浏览:773
    已加密的u盘怎么清空 浏览:433
    怎么拿到服务器权限 浏览:194
    延时摄影app如何保存 浏览:195