‘壹’ python操作文本文件
在磁盘上读写文件之前,必须先打开这个文件。打开文件就需要提供文件的路径。
在与Python程序同一个目录下,我们有一个名为 pi.txt 的文件,它的内容如下:
现在使用Python来打开和关闭它:
执行此程序不会有任何输出,这表示着打开和关闭文件都得到了正确执行。
可以看到,使用 open() 函数打开文件,参数为文件名(或文件路径);该函数会返回一个文件句柄,文件句柄并不会实际保存文件的内容,而是代表着一种操作,在上面的例子中,文件句柄被赋值给变量 fhand 。
打开文件后,程序具有读(默认)该文件的权限。
最后,使用文件句柄的 close() 方法关闭文件。这非常重要,因为使用完而没有关闭的文件会占用内存或造成安全问题。
如果Python找不到该文件,则会返回错误,比如下面这样:
Python提示我们没有相应的文件或者目录: 'pii.txt'。
打开文件后就可以对文件进行操作:
fhand.read() 方法将文件内容作为一个字符串返回。
文件中的每一行末尾使用换行符 \n 表示换行,例子中方法 rstrip() 去掉文本中的换行符,然后输出。
程序的运行效果如下:
如果在文件关闭之前程序发生BUG意外退出,则文件不会关闭,为了避免此类事件的发生,可以使用 with 语句:
with 语句的特点是即便在操作文件时发生错误,文件也会自动被清理。
fhand.read() 虽然可以读取文本内容,但是当我们想要逐行处理文件内容,或者文件很大而无法一次性加载进内存的时候,就不适用了。
可以使用 for 语句逐行处理文件内容:
本程序中将文件名保存在变量 filename 中。
打开文件后,使用 for 语句按行读取文件内容。例子中,每次循环依次取一行文本以字符串的格式保存在变量 line 中,每次循环中变量 count 自增1。
这个程序的作用是,打开程序所在目录的 when_old.txt 文件,然后统计行数,并输出结果。
when_old.txt 文件的内容是:
可以使用其他方法操作字符串 line :
程序将以 'And' 开头的行打印出来。
打开文件后,默认的权限是读(r),如果要写文件,则需要使用写(w)或者追加(a)权限。
w权限,打开一个文件用于写入。如果该文件存在,则覆盖该文件;如果该文件不存在,则创建该文件。
a权限,打开一个文件用于追加。如果该文件存在,在文件末尾追加;如果该文件不存在,则创建该文件。
下面是一个使用w权限打开文件的例子:
例子中使用w权限打开该文件,并写入两行。(如果该文件存在,则内容会被覆盖)
fhand.write() 不会自动添加换行符,所以如果需要换行,需在末尾添加 \n 。
下面我们写一个统计文件中词频的程序。
它会统计文件中各个词的出现的次数,然后由高到低显示出前5个词。
首先我们完成打开和关闭文件的程序内容:
在例子中,由用户输入文件名,并且使用异常捕获以处理文件打开时的错误。
下面对内容进行统计:
这个程序:
如此,我们就在字典中存放了 单词:次数 的键值对。
由于字典不能保存顺序,所以不能对其进行排序。为此,将每个键值对都添加到一个列表中:
在列表 word_list 中,每一项都是一个元组,每个元组第一个值是单词出现的次数,第二个值是单词内容。
对其进行逆向(由大到小)排序:
打印最终结果:
整个程序如下:
下面是程序运行结果的示例:
‘贰’ python如何利用已有的语料库,对一篇新闻文本进行分词
把自己的语料库(sogou文本分类语料库)放在LTK_DATA/corpora/目录下;
然后在命令行输入以下之后,即可看到所有的txt文件名列表了。
‘叁’ python文本菜单的程序
#!/usr/bin/envpython3#py3.6+
"""
#要求做一个系统菜单,输入数字进入对应菜单,包含以下内容,正常操作不能报错:
#菜单1:打印所有产品价格和库存
#菜单2:修改产品价格
#菜单3:增加库存
#菜单4:购买指定数量产品
#菜单5:增加新产品作为思考题
#菜单0:退出当前系统
"""
price={'vegetables':'3','eggs':'4','rice':'2'}#价格dict
stock={'vegetables':'0','eggs':'0','rice':'0'}#库存dict
tip='''
1:打印所有产品价格和库存
2:修改产品价格
3:增加库存
4:购买指定数量产品
5:增加新产品作为思考题
0:退出当前系统
'''
defmain():
whileTrue:
globalprice,stock
a=input(f'Pleaseenteranumber:{tip} ').strip()
ifa=='0':
print('Exit!')
break
elifa=='1':
style='{:15}{:6}{:5}'
print(style.format('Name','price','stock'))
for(n,p),(_,s)inzip(price.items(),stock.items()):
print(style.format(n,p,s))
print()
elifa=='2':
whileTrue:
n=input(':')
ifninprice:
break
print('invalidinput!Shouldbe"{}".'.format(
'"or"'.join(price)))
p=input('enteranewpriceofthisproct:')
price[n]=p
elifa=='3':
whileTrue:
n=input(':')
ifninstock:
break
print('Invalidinput!Shouldbe"{}".'.format(
'"or"'.join(stock)))
whileTrue:
s=input(':')
try:
s=int(s)
break
except:
print('Invalidinput,mustbeainteger!')
stock[n]=str(int(stock[n])+s)
elifa=='4':
whileTrue:
n=input('enteraproctnametobuyit:')
ifninstock:
break
print('Invalidinput!Shouldbe"{}".'.format(
'"or"'.join(stock)))
whileTrue:
s=input('enteraintegerforhowmanytobuy:')
try:
s=int(s)
ifs<=0ors>int(stock[n]):
raise
break
except:
print('Invalidinput,mustbeapositiveintegerand'
'lessthan{}!'.format(stock[n]))
y=input('Youwanttobuy{}X{},whichcost{}?(y)/n'.format(
n,s,int(price[n])*s))
ify.strip().lower()in('y',''):
stock[n]=str(int(stock[n])-s)
print('Youpay{}andget{}{}'.format(int(price[n]*s),s,n))
elifa=='5':
print('Uncomplete... ')
if__name__=='__main__':
main()
‘肆’ python写算法不好
基于以下三个原因,我们选择Python作为实现机器学习算法的编程语言:(1) python的语法清晰;(2) 易于操作纯文本文件;(3) 使用广泛,存在大量的开发文档。
可执行伪代码
Python具有清晰的语法结构,大家也把它称作可执行伪代码(executable pseudo-code)。默认安装的Python开发环境已经附带了很多高级数据类型,如列表、元组、字典、集合、队列等,无需进一步编程就可以使用这些数据类型的操作。使用这些数据类型使得实现抽象的数学概念非常简单。此外,读者还可以使用自己熟悉的编程风格,如面向对象编程、面向过程编程、或者函数式编程。
Python语言处理和操作文本文件非常简单,非常易于处理非数值型数据。Python语言提供了丰富的正则表达式函数以及很多访问Web页面的函数库,使得从HTML中提取数据变得非常简单直观。
Python比较流行
Python语言使用广泛,代码范例也很多,便于读者快速学习和掌握。此外,在开发实际应用程序时,也可以利用丰富的模块库缩短开发周期。
在科学和金融领域,Python语言得到了广泛应用。SciPy和NumPy等许多科学函数库都实现了向量和矩阵操作,这些函数库增加了代码的可读性,学过线性代数的人都可以看懂代码的实际功能。另外,科学函数库SciPy和NumPy使用底层语言(C和Fortran)编写,提高了相关应用程序的计算性能。本书将大量使用Python的NumPy。
Python的科学工具可以与绘图工具Matplotlib协同工作。Matplotlib可以绘制2D、3D图形,也可以处理科学研究中经常使用到的图形,所以本书也将大量使用Matplotlib。
Python开发环境还提供了交互式shell环境,允许用户开发程序时查看和检测程序内容。
Python开发环境将来还会集成Pylab模块,它将NumPy、SciPy和Matplotlib合并为一个开发环境。在本书写作时,Pylab还没有并入Python环境,但是不远的将来我们肯定可以在Python开发环境找到它。
Python语言的特色
诸如MATLAB和Mathematica等高级程序语言也允许用户执行矩阵操作,MATLAB甚至还有许多内嵌的特征可以轻松地构造机器学习应用,而且MATLAB的运算速度也很快。然而MATLAB的不足之处是软件费用太高,单个软件授权就要花费数千美元。虽然也有适合MATLAB的第三方插件,但是没有一个有影响力的大型开源项目。
Java和C等强类型程序设计语言也有矩阵数学库,然而对于这些程序设计语言来说,最大的问题是即使完成简单的操作也要编写大量的代码。程序员首先需要定义变量的类型,对于Java来说,每次封装属性时还需要实现getter和setter方法。另外还要记着实现子类,即使并不想使用子类,也必须实现子类方法。为了完成一个简单的工作,我们必须花费大量时间编写了很多无用冗长的代码。Python语言则与Java和C完全不同,它清晰简练,而且易于理解,即使不是编程人员也能够理解程序的含义,而Java和C对于非编程人员则像天书一样难于理解。
所有人在小学二年级已经学会了写作,然而大多数人必须从事其他更重要的工作。
——鲍比·奈特
也许某一天,我们可以在这句话中将“写作”替代为“编写代码”,虽然有些人对于编写代码很感兴趣,但是对于大多数人来说,编程仅是完成其他任务的工具而已。Python语言是高级编程语言,我们可以花费更多的时间处理数据的内在含义,而无须花费太多精力解决计算机如何得到数据结果。Python语言使得我们很容易表达自己的目的。
Python语言的缺点
Python语言唯一的不足是性能问题。Python程序运行的效率不如Java或者C代码高,但是我们可以使用Python调用C编译的代码。这样,我们就可以同时利用C和Python的优点,逐步地开发机器学习应用程序。我们可以首先使用Python编写实验程序,如果进一步想要在产品中实现机器学习,转换成C代码也不困难。如果程序是按照模块化原则组织的,我们可以先构造可运行的Python程序,然后再逐步使用C代码替换核心代码以改进程序的性能。C++ Boost库就适合完成这个任务,其他类似于Cython和PyPy的工具也可以编写强类型的Python代码,改进一般Python程序的性能。
如果程序的算法或者思想有缺陷,则无论程序的性能如何,都无法得到正确的结果。如果解决问题的思想存在问题,那么单纯通过提高程序的运行效率,扩展用户规模都无法解决这个核心问题。从这个角度来看,Python快速实现系统的优势就更加明显了,我们可以快速地检验算法或者思想是否正确,如果需要,再进一步优化代码。
‘伍’ python编程是啥
python编程是啥
python编程是啥,Python是一种代表简单主义思想的语言,Python崛起更加符合开发者的习惯和口味。下面我给大家分享一下关于python编程是啥的相关信息。
编程语言领域Python成为了一个耀眼的新星,Python崛起的原因与其本身特点有关,也许它是更加符合开发者的习惯和口味。现在有一种声音说Python将会超越Java成全球最流行编程语言。
这些年,编程语言的发展进程很快,在商业公司、开源社区两股力量的共同推动下,涌现出诸如Go、Swift这类后起之秀,其中最为耀眼的是Python。
知名开发者网站Stackoverflow撰文指出,从2012至2017年编程语言Python成为开发者使用增长最快的主流编程语言,其中2017年增长率达到了27%,一举超过包括Java、C#、PHP、C++在内的所有同类。另据高盛集团发布的一份《2017调查报告》针对全球数千名高校实习生的调查中,当问到你认为“哪个语言在未来会更重要”时,被调查的80、90后优秀年轻开发者中72%选了Python。
语言的使用者是一直被誉为业界上游“源头活水”的开发者,其重要程度从各大科技巨头公司每年例行召开的开发者大会上可见一斑。对于开发者群体而言最重要的事物有两个,一是平台,二就是编程语言。编程语言Python为什么能够获得全球众多开发者的青睐?它的崛起给开发者世界带来了什么变化?
成功的一半源于好的开始
在主流编程语言当中,Python并不是一个“新人”,它的历史超过25年,但真正风靡之时却是最近几年,所以“后起之秀”的称呼实至名归。Python的起源是19 89年,其发明者荷兰人程序员吉多范罗苏姆受ABC语言的启发计划开发一个新的脚本解释器,由此迈出了Python项目的起点。
Python能够真正风靡的原因之一是有一个好的起点。它的起步很稳,避开了版权纠纷,且搭上了开源运动的顺风车。在那个年代,商业版权一直是热门 事件,业界史上第一个软件领域重大官司AT&T和伯克利BSD的Unix版权案打得天昏地暗,该案的结局直接促成了BSD的开源分支、Linux的诞生以及震惊世界的自由软件运动。
Python最初的版权归属是CWI(阿姆斯特丹的国家数学与计算机科研学会),这与吉多早年在该机构工作有关,后来吉多受雇于CNRI(维吉尼亚州的国家创新研究公司),Python权属转移至此。那时自由软件运动已经开始,在CNRI期间发布的1.6至2.1多个版本的`Python许可证是一种与GPL并不兼容且类似于BSD的开源许可,CNRI因受到自由软件基金会的压力释放了Python的原许可证,吉多由此掌握了主导权并起草了新的许可证。他改变了原许可证与GPL的不兼容,此举获得了自由软件基金会颁发的自由软件进步奖。再后来吉多和他的团队成立了Python软件基金会,将版权与许可证置于其下。
创始人吉多范罗苏姆的心思缜密与灵活处事为Python最初的发展营造了良好的环境,包括几次权属的转移、起草新的许可证、机智地与自由软件阵营斡旋,最后安全融入开源的大潮。这一切为Python此后十多年里逐渐成长为主流编程语言赢得了契机。
“人生苦短,我用Python”并非一句戏言
Python崛起的原因之二与其本身特点有关,或者说,其长期维护演进形成的独特风格迎合了大多数开发者的口味。在开发者社群流行着一句玩笑“人生苦短,我用Python”(原话为” Life is short, you need Python”),这句看似戏言的话实际上恰恰反映了Python的语言特性与其在开发者心里的价值分量。
除了包涵大多数主流编程语言的优点(面向对象、语法丰富)之外,Python的直观特点是简明优雅、易于开发,用尽量少的代码完成更多工作。尽管Python是一种解释型语言,与传统的编译型语言相比降低了机器执行效率,但是处理器的处理速率与环境速率(比如网络环境)的差异在大多数场景中完全抵消了上述代价;牺牲部分运行效率带来的好处则是提升了开发效率,在跨平台的时候无需移植和重新编译。 所以Python的显着优点在于速成,对于时间短、变化快的需求而言尤为胜任。
Python最强大的地方体现在它的两个外号上,一个叫“内置电池”,另一个是“胶水语言”。前者的意思是,Python官方本身提供了非常完善的标准代码库,包括针对网络编程、输入输出、文件系统、图形处理、数据库、文本处理等等。代码库相当于已经编写完成打包供开发者使用的代码集合,程序员只需通过加载、调用等操作手段即可实现对库中函数、功能的利用,从而省去了自己编写大量代码的过程,让编程工作看起来更像是在“搭积木”。除了内置库,开源社区和独立开发者长期为Python贡献了丰富大量的第三方库,其数量远超其他主流编程语言,可见Python的语言生态已然相当壮大。
“胶水语言”是Python的另一个亮点。Python本身被设计成具有可扩展性,它提供了丰富的API和工具,以便开发者能够轻松使用包括C、C++等主流编程语言编写的模块来扩充程序。就像使用胶水一样把用其他编程语言编写的模块粘合过来,让整个程序同时兼备其他语言的优点,起到了黏合剂的作用。正是这种多面手的角色让Python近几年在开发者世界中名声鹊起,因为互联网与移动互联时代的需求量急速倍增,大量开发者亟需一种极速、敏捷的工具来助其处理与日俱增的工作,Python发展至今的形态正好满足了他们的愿望。
Python的影响
从两个着名编程语言排行网站TIOBE和PYPL的最新数据来看,Java与Python的排名分别位于第1和第5、第1和第2。关于两个网站的排行机制我们不得而知,但从开发者社群的相关评论中可以认为PYPL更能反映编程语言在开发者群体中的流行程度。不论如何,Python的崛起已是毋庸置疑的事实,而它上面的前辈则是常年占据榜单第1,互联网与移动时代的娇子Java。从Stackoverflow和多个开源社区公开的数据来看,Python的用户数量增长很快,在今后两年超过Java成为全球最流行编程语言的可能性非常之高。
值得一提的是,那些颇有影响力的主流编程语言,其背后一般都站着科技巨头公司,比如Java之于甲骨文、C#之于微软、ObjecTIve-C之于苹果。Java之所以常年第一是因为其同时还几乎是安卓平台的御用语言,以及受益于Sun时代影响力的眷顾。Python虽曾一度为谷歌使用,但Go语言问世后随着时间推移或将遇冷。也就是说,Python成了没有巨头站队的主流编程语言,那么它的影响力是如何维系的?为什么还能够保持高速成长并形成赶超Java之势?
我们认为这与Python多年来实现较好案例与范用性有关。使用Python开发的知名案例中,包括豆瓣、果壳、知乎、Dropbox、EVE(星战前夜)每一个都是重量级产品,这说明Python语言本身的发展已日臻完善,有着极高的稳定与可靠性保证。第二是Python的应用范围,除了日常工具和脚本之外,还适用于Web程序、GUI开发、操作系统中间件、服务端运维等等,这些年Python的一些第三方库在机器学习、神经网络方面活跃非凡,这也为语言本身的推广和流行加分不少。
最后需要指出的是,Python编程思想包含强烈的黑箱思维,这意味着开发者将愈加重视模块化和流水线式的编程工作,事实上这也是未来主流编程语言的发展趋向。随着计算机语言的演化和开发工具集成功能日趋强大,未来的编程工作将大幅简化。从某种角度看,Python更像是已经“迈入未来”的编程语言,其对开发者群体结构变化,以及新进开发者数量的激增,这些影响都将是深远的。
python的作用:
1、系统编程:提供API(ApplicationProgramming
Interface应用程序编程接口),能方便进行系统维护和管理,Linux下标志性语言之一,是很多系统管理员理想的编程工具。
2、图形处理:有PIL、Tkinter等图形库支持,能方便进行图形处理。
3、数学处理:NumPy扩展提供大量与许多标准数学库的接口。
4、文本处理:python提供的re模块能支持正则表达式,还提供SGML,XML分析模块,许多程序员利用python进行XML程序的开发。
5、数据库编程:程序员可通过遵循PythonDB-API(数据库应用程序编程接口)规范的模块与MicrosoftSQL Server,Oracle,Sybase,DB2,MySQL、SQLite等数据库通信。python自带有一个Gadfly模块,提供了一个完整的SQL环境。
(5)python文本分类程序扩展阅读:
python中文就是蟒蛇的意思。在计算机中,它是一种编程语言。Python(英语发音:/paθn/),是一种面向对象、解释型计算机程序设计语言,由GuidovanRossum于19 89年底发明,第一个公开发行版发行于1991年。Python语法简洁而清晰,具有丰富和强大的类库。
它常被昵称为胶水语言,它能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写。
比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C++重写。1发展历程编辑自从20世纪90年代初Python语言诞生至今,它逐渐被广泛应用于处理系统管理任务和Web编程。Python已经成为最受欢迎的程序设计语言之一。
零基础学python 要花多长时间?
答案:两天!别不信,听我细细道来
如何两天学会python 编程入门基础课程?
月31-9月1日,艾威培训再次走进知名电子公司—明导国际,为其展开2天的Python入门课程。
明导国际(MentorGraphics)是一家从事电子设计自动化的跨国公司。于1981年创立。其总部位于美国俄勒冈州的威尔森维尔(Wilsonville)。
艾威国际培训(Avtech Institute of Technology),源于美国,始于1998.专业从事企业级在职人员技能提升项目管理、IT管理、IT技术、云计算大数据、需求管理、信息安全与审计,产品管理、python编程入门等培训与各类国际认证考试提供商。进入中国16年来,已成为众多500强企业(惠普、华为、惠普、戴尔、IBM、中兴、飞利浦等)指定的培训供应商。
Python编程入门课程非常适合零基础的学生,不受行业限制,属于python认证的初级阶段课程。
艾威培训根据明导电子的需求定制了两天的python培训课程。其主要内容包括语法基础、Python程序流程控制、Python数据结构、Python函数等初级阶段的内容。
艾威培训python 5年以上资深讲师用课堂理论+实验的方式为明导国际培训员工的python初级技能。比如说利用python处理电影列表、创建自己的分类树模块等。
学以致用、以学生为中心一直是艾威培训的服务特色。除此以外,艾威培训还提供考试报名、准考证、复习备考培训、拿证一条龙服务。
通过python编程入门课程的培训,学生们能够掌握python编程语言的基础知识,能够看懂python语言编写的应用程序,能够编写简单的功能性程序,了解python语言可以应用的领域以及局限性。
入门很重要,老师教的好,基础扎实了,才能一步步向数据挖掘与分析高阶课程迈进,一步步成为数据分析领域的大牛!
‘陆’ Python文本处理工具都有哪些
1、 NLTK — Natural Language Toolkit
搞自然语言处理的同学应该没有人不知道NLTK吧,这儿也就不多说了。不过引荐两本书籍给刚刚触摸NLTK或许需求具体了解NLTK的同学: 一个是官方的《Natural Language Processing with Python》,以介绍NLTK里的功用用法为主,一起附带一些Python常识,一起国内陈涛同学友情翻译了一个中文版,这儿可以看到:引荐《用Python进行自然语言处理》中文翻译-NLTK配套书;另外一本是《Python Text Processing with NLTK 2.0 Cookbook》,这本书要深入一些,会涉及到NLTK的代码结构,一起会介绍怎么定制自己的语料和模型等,相当不错。
2、 Pattern
Pattern由比利时安特卫普大学CLiPS实验室出品,客观的说,Pattern不仅仅是一套文本处理东西,它更是一套web数据挖掘东西,囊括了数据抓取模块(包含Google, Twitter, 维基网络的API,以及爬虫和HTML剖析器),文本处理模块(词性标示,情感剖析等),机器学习模块(VSM, 聚类,SVM)以及可视化模块等,可以说,Pattern的这一整套逻辑也是这篇文章的组织逻辑,不过这儿我们暂时把Pattern放到文本处理部分。我个人首要使用的是它的英文处理模块Pattern.en, 有许多很不错的文本处理功用,包含基础的tokenize, 词性标示,语句切分,语法检查,拼写纠错,情感剖析,句法剖析等,相当不错。
3、 TextBlob: Simplified Text Processing
TextBlob是一个很有意思的Python文本处理东西包,它其实是根据上面两个Python东西包NLKT和Pattern做了封装(TextBlob stands on the giant shoulders of NLTK and pattern, and plays nicely with both),一起供给了许多文本处理功用的接口,包含词性标示,名词短语提取,情感剖析,文本分类,拼写检查等,甚至包含翻译和语言检测,不过这个是根据Google的API的,有调用次数约束。
4、 MBSP for Python
MBSP与Pattern同源,同出自比利时安特卫普大学CLiPS实验室,供给了Word Tokenization, 语句切分,词性标示,Chunking, Lemmatization,句法剖析等根本的文本处理功用,感兴趣的同学可以重视。
关于 Python文本处理工具都有哪些,环球青藤小编就和大家分享到这里了,学习是永无止境的,学习一项技能更是受益终身,所以,只要肯努力学,什么时候开始都不晚。如果您还想继续了解关于python编程的学习方法及素材等内容,可以点击本站其他文章学习。