‘壹’ 托辊厂家 托辊质量
托辊厂家做的托辊质量都差不多首先托辊厂家不生产陶瓷 不生产轴承 包括卡簧油封都是进的别的厂家的托辊厂家说白了就是加工 我们厂就是这样 目前没听说托辊厂家是自己生产这些的质量你问哪家都说没问题价格就看厂家看利润的大小了 都说托辊好不好就看轴承,这只是其一 谁都说我们厂采用的哈瓦洛的。 其实主要是托辊的密封性 在好的轴承密封性不好 托辊进了沙子什么的 也白费
不过保定卓力机械做的托辊相当不错,
公司的生产 检测装备在全国输送行业中位居前列,公司引进日本松下公司PLC可编程序控制器控制的先进设备,采用流水式机械化生产保证了加工精度从而确保质量要求,托辊性能检测机可实现径跳误差检测,轴向窜动误差检测,摩擦阻力系数检测。
托辊钢管采用托辊专用无缝钢管,保证了托辊管的圆度、材质、壁厚、耐磨。
托辊轴是采用定点厂家生产的优质45#钢,以保证其材质的绝对可靠。
轴承座采用冷扎钢板经多次工艺冲压而成,托辊壳和轴承座被自动焊接机械手焊接在一起,形成一个具有很高强度的整体构造。
托辊轴承采用国内外知名品牌的大游隙深沟球双密封轴承,使托辊具有理想的静平衡和动平衡,其旋转阻力优于国标。
托辊密封采用综合国外和国内迷宫式密封的特点进行了专门设计,有效防止杂质、水、空气对托辊内部的侵蚀,具有结构精美、精度高、全密封、寿命长、性能可靠的特点。
‘贰’ 电脑常识
计算机的产生是20世纪最重要的科学技术大事件之一。1946年美国宾夕法尼亚大学经过几年的艰苦努力,研制出世界上第一台电子计算机--埃尼阿克(ENIAC)。
一、 计算机的发展史:
根据计算机所采用的物理器件不同,可分为四个阶段。
第一代:电子管计算机,开始于1946年,结构上以CPU为中心,使用机器语言,速度慢、存储量小,主要用于数值计算。
第二代:晶体管计算机,开始于1958年,结构上以存储器为中心,使用高级语言应用范围扩大到数据处理和工业控制。
第三代:中小规模集成电路计算机,开始于1964年,结构上仍以存储器为中心,增加了多种外部设备,软件得到一定发展,计算机处理图像、文字和资料功能加强。
第四代:大、超大规模集成电路计算机,开始于1971年,应用更加广泛,出现了微型计算机。
计算机硬件发展的同时,软件始终伴随其步伐迅猛发展,就计算机的编程语言而言,也划分为三代。
第一代:机器语言。每条指令用二进制编码,效率很低。
第二代:汇编语言。用符号编程,和具体机器指令有关,效率不高。
第三代:高级语言:如FORTRAN、COBOL、BASIC、PASCAL等都属于高级语言。
二、我国计算机的发展
我国从1956年开始电子计算机科研和教学工作。
1983年12月研制成功每秒运行1亿次的"银河"巨型计算机;
1992年11月研制成功每秒运行10亿次的"银河Ⅱ"巨型计算机;
1997年研制成功每秒运行130亿次的"银河Ⅲ"巨型计算机。
三、计算机的发展趋势
计算机的发展向微型化和巨型化、多媒体化和网络化方向发展。
计算机的基本概念
计算机内所有的信息都是以二进制的形式表示的,单位是位。
位:计算机只认识由0或1组成的二进制数,二进制数中的每个0或1就是信息的最小单位,称为"位"(bit)。
字节:是衡量计算机存贮容量的单位。一个8位的二进制数据单元称一个字节(byte)。在计算机内部,一个字节可以表示一个数据,也可以表示一个英文字母或其他特殊字符,二个字节可以表示一个汉字。
字:在计算机中,作为一个整体单元进行存贮和处理的一组二进制数。一台计算机,字的二进制数的位数是固定的。
字长:一个字中包含二进制数位数的多少称为字长。字长是标志计算机精度的一项技术指标。
存贮器编址:为了便于对计算机内的数据进行有效的管理和存贮,需要对内存单元编号,即给每个存贮单元一个地址。每个存贮单元存放一个字节的数据。 如果需要对某一个存贮单元进行存贮,必须先知道该单元的地址,然后才能 对该单元进行信息的存取。
注意:存贮单元的地址和存贮单元中的内容是不同。
指令:指挥计算机进行基本操作的命令。
指令系统:一种计算机所能执行的全部指令的集合。
程序:按一定处理步骤编排的,能完成一定处理能力的指令序列。
计算机系统
计算机系统是由硬件系统和软件系统所组成的。
一、计算机的硬件系统
硬件系统由输入设备、输出设备、存储器、运算器和控制器组成。
其中运算器和控制器结合在一起,称为中央处理器(CPU)
CPU(即运算器和控制器)和存储器合称为主机。
输入设备:常见有键盘、鼠标、扫描仪等
输出设备:常见有显示器、打印机和绘图仪等;
中央处理器:又称CPU,它包括运算器和控制器。是计算机的核心部分。
我们平时所说的486、586、奔腾Ⅲ、奔腾Ⅳ指的是CPU的档次。
运算器:可以进行算术运算和逻辑运算;
控制器:是计算机的指挥系统,它的操作过程是取指令--分析指令,循环执行。
存储器:具有记忆功能的物理器件,用于存储信息。分为内存和外存。
内存:是半导体存储器,分为只读存储器(ROM)和随机存储器(RAM)。
ROM只可读出,不能写入,断电后内容还在;
RAM可随意写入读出,但断电后内容不存在。
外存:磁性存储器(软盘和硬盘);光电存储器(光盘),可以作为永久性存储器。
存储器的两个重要指标:存取速度和存储容量。内存的存取速度最快,软盘最慢。存储容量是存储的信息量,它用字节(Byte)作为基本单位,1个字节用8位二进制数表示,1KB=1024B,1MB=1024KB,1GB=1024MB。
二、计算机的软件系统
计算机软件系统分为系统软件和应用软件两大类。
系统软件:为了使用和管理计算机的软件;主要操作系统软件有Windows95/98/2000/NT, DOS, UCDOS,MS-DOS,Unix,,OS/2,Linux等。其中,WINDOWS是多任务可视化图形界面,DOS是字符命令形式的单任务操作系统。
应用软件:为了某个应用目的而编写的软件,主要有辅助教学软件,辅助设计软件、文字处理软件、工具软件以及其它的应用软件。
三、计算机的工作原理:
到目前为止,电子计算机的工作原理均采用冯·诺依曼的存储程序,并自动完成程序的设计思想.其工作过程如下图所示:
需要注意的是:程序中的数据,指令都采用数字化编码方式,保存在存储器中;程序中的指令必须是属于这台机器的指令系统.
四、计算机病毒
计算机病毒是一种程序,是人为设计的具有破坏性的程序.它往往使计算机不能正常工作.计算机病毒具有破坏性,传播性,可激发性,潜伏性,隐蔽性等特点.由于计算机病毒危害极大,需要注意隔离计算机病毒的来源,经常用杀病毒软件检查计算机系统和存储器.
计算机中有关数,编码的基本常识
(一)1.计算机是智能化的电器设备
计算机就其本身来说是一个电器设备,为了能够快速存储,处理,传递信息,其内部采用了大量的电子元件,在这些电子元件中,电路的通和断,电压高低,这两种状态最容易实现,也最稳定,也最容易实现对电路本身的控制.我们将计算机所能表示这样的状态,用0,1来表示,即用二进制数表示计算机内部的所有运算和操作.
2.二进制数的运算法则
二进制数运算非常简单,计算机很容易实现,其主要法则是:
0+0=0 0+1=1 1+0=1 1十1=10; 0 x 0=0 0 xl=0 1x 0= 0 1xl=1
由于运算简单,电器元件容易实现,所以计算机内部都用二进制编码进行数据的传送,计算.
3.十进制与二进制,八进制,十六进制数之间的相互转换
(1)数的进制与基数.
计数的进制不同,则它们的基数也不相同,如表1-l所示.
进制
基数
十进制数
典型示例(转换)
二进制
0,1
10,7,23
1010,111,10111
三进制
0,1,2
10,7,23
101,21,212
四进制
0,1,2,3
10,7,23
22,13,113
八进制
0,1,2,3,4,5,6,7
10,63,126
12,77,176
十进制
0,1,2,3,4,5,6,7,8,9
十六进制
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
10,63,254
A,3F,15E
(2)数的权
不同进制的数,基数不同,其每位上所代表的值的大小也不相同,我们称之为"权"
①十进制数,逢十进一.如,(219)10=2x102+1x101+9x100
②二进制数,逢二进一.如,(11010)2=lx24+lx23+0x22+lx21+0x20=26
③八进制数,逢八进一.如,(273)8= 2x82+7x81+3x80=187
④十六进制数,逢十六进一.如,(27B)16=2x162+7x161+11x160=635
从以上的计算中,可以看到,进制不同,基数不同,每位上权值大小也不相同,数值大小也不相同.
(3)十进制数转换成任意进制数
将十进制数转换成任意进制数的基本方法是:将十进制数除以所定的进制数反向取余.
例如:
①将39用二进制数表示,用如下的短除法,求余数,并反向取余.如果转换成二进制还可以用右边的2的N次幂表示.
短除法 39==>(100111)2
②将245用八进制数表示,我们可以用如下的短除法,求余数,并反向取余.
想一想,为什么要反向取余.对于十进制小数要转换成其他进制的数,则是不断将小数部分乘以进制数取整,作为转换后的小数部分,直到为零或精确到小数点后几位.如: (0.35)10≈(0.01011)2 (0.125)10=(0.001)2
(4)任意进制的数转换成十进制数
将任意进制数转换成十进制数的基本方法是按权展开,见(2)数的权内容.
(二)ASCII码 ( American Standard Code for Information Interchange )
美国的标准信息交换代码
将每个字符用7位的二进制数来表示,共有128种状态
大小字母,0…9,其它符号,控制符
' 0 ' ―― 48 ' A ' ―― 65 ' a ' ―― 97
(三)汉字信息编码
汉字输入码
汉字输入方法大体可分为:区位码(数字码),音码,形码,音形码.
· 区位码:优点是无重码或重码率低,缺点是难于记忆;
· 音码:优点是大多数人都易于掌握,但同音字多,重码率高,影响输入的速度;
· 形码:根据汉字的字型进行编码,编码的规则较多,难于记忆,必须经过训练才能较好地掌握;重码率低
· 音形码:将音码和形码结合起来,输入汉字,减少重码率,提高汉字输入速度;
2.汉字交换码
汉字交换码是指不同的具有汉字处理功能的计算机系统之间在交换汉字信息时所使用的代码标准.自国家标准GB2312-80公布以来,我国一直延用该标准所规定的国标码作为统一的汉字信息交换码.
GB2312-80标准包括了6763个汉字,按其使用频度分为一级汉字3755个和二级汉字3008个.一级汉字按拼音排序,二级汉字按部首排序.此外,该标准还包括标点符号,数种西文字母,图形,数码等符号682个.
区位码的区码和位码均采用从01到94的十进制,国标码采用十六进制的21H到73H(数字后加H表示其为十六进制数).区位码和国标码的换算关系是:区码和位码分别加上十进制数32.如"国"字在表中的25行90列,其区位码为2590,国标码是397AH.
* 由于GB2312-80是80年代制定的标准,在实际应用时常常感到不够,所以,建议处理文字信息的产品采用新颁布的GB18030信息交换用汉字编码字符集,这个标准繁,简字均处同一平台,可解决两岸三地间GB码与BIG5码间的字码转换不便的问题.
3.字形存储码
字形存储码是指供计算机输出汉字(显示或打印)用的二进制信息,也称字模.通常,采用的是数字化点阵字模.
一般的点阵规模有16×16,24×24,64×64等,每一个点在存储器中用一个二进制位(bit)存储.例如,在16×16的点阵中,需8×32 bit 的存储空间,每8 bit为1字节,所以,需32字节的存储空间.在相同点阵中,不管其笔划繁简,每个汉字所占的字节数相等.
为了节省存储空间,普遍采用了字形数据压缩技术.所谓的矢量汉字是指用矢量方法将汉字点阵字模进行压缩后得到的汉字字形的数字化信息.
(四)其它信息的数字化
图像信息的数字化
一幅图像可以看作是由一个个像素点构成,图像的信息化,就是对每个像素用若干个二进制数码进行编码.图像信息化后,往往还要进行压缩.
图像文件的后缀名有:bmp,gif,jpg,pdf等;
声音信息的数字化
自然界的声音是一种连续变化的模拟信息,可以采用A/D转换器对声音信息进行数字化.
声音文件的后缀名有:wav,mp3,mid等;
视频信息的数字化
视频信息可以看成连续变换的多幅图像构成,播放视频信息,每秒需传输和处理25幅以上的图像.视频信息数字化后的存储量相当大,所以需要进行压缩处理.
视频文件后缀名有:avi,mpg等;
机器数与真值
数有正,负两种,在计算机中数的符号是用数码表示的.一般情况下,用0表示正数,用1表示负数.通常符号位放在数的最高位.
机器数:连同符号位在一起作为一个数,称为机器数.
真值数:一个数的数值部分称为真值数.
如:x1=+1011011 x2=-1011011, 则X1的机器数是01011011,真值数是+1011011,X2的机器数是11011011,真值数是-1011011.
(一)数的定点表示和浮点表示
(1) 定点小数格式
任何一个M位的小数可以表示成:
N=Ns . N-1N-2…N-m (其中Ns 是符号位,其值表示的范围|N|<=1-2-m)
(2) 定点整数格式
任何一个N位带符号的整数都可表示为:
N=Ns Nn-1Nn-2…N0 (其中Ns 是符号位,其值表示的范围|N|<=2n-1)
(3) 数的浮点表示
浮点数是指小数点在数据中的位置可以左右移动的数.一个数N要用浮点表示可以写成:N=M·RE 其中M表示浮点数的尾数,E表示浮点数的指数或称为阶码,R指的是在这个指数下的基数.浮点数通常表示成如下格式:
Ms
E
M
1位 m位 n位
M:浮点数的尾数,用定点小数表示,小数点在尾数最高位之前,是默认的.尾数用于表示浮点数的有效位,其位数N的大小反映了此浮点数的精度.
E:浮点数的阶码,用定点整数表示.
Ms:浮点数的符号位,也就是尾数的符号位,一般放在整个浮点数的最高位.
(4)浮点数的规格化
当尾数用二进制数表示时,浮点规格化数定义尾数S应满足下面关系:
(I)对于正数,S应大于等于1/2,小于1,用二进制数表示为:
S=0.1******…(其中*为0或1)
(II)对于负数,如果尾数用原码表示,S应小于等于-1/2,大于-1,表示为:
S=1.1******…(其中*为0或1)
(III)机器零:当一个浮点数的尾数为0,不论其阶码为何值;或阶码的值遇到比它能表示的最小值还小时,不管其尾数为何值,计算机都把该浮点数看成零,即把阶码尾数全变为0,称它为机器0.
(二)二进制数值数据的编码方法
最常用的编码方法有原码表示法,补码表示法和反码表示法三种.
1,原码表示法
用机器数的最高(最左)一位代表符号,其余各位给出数值的绝对值.
[X]原=符号位+|X|(0代表正号,1代表负号)
真值零的原码表示法,有正零和负零两种表示:
[+0]原=00000 [-0]原=10000
2,补码表示法
如果X为正数,则:[X]补=[X]原
如果X为负数,则:[X]补=(把[X]原 除符号位外,其余各位全变反(0变1,1变0),再在最末位加1 )
[+0]补=[-0]补=0000
同理有:如果X为负数,则:[X]原=(把[X]补 除符号位外,其余各位全变反(0变1,1变0),再在最末位加1 )
3,反码表示法
如果X为正数,则:[X]反=[X]原
如果X为负数,则:[X]反=(把[X]原 除符号位外,其余各位全变反(0变1,1变0))
[+0]反=00000 [-0]反=11111
可见,如果真值X=0,则[X]补 有唯一的编码,[X]原 和 [X]反 都有两个不同的编码.
2 39
2 19 ……1
2 9 ……1
2 4 ……1
2 2 ……0
2 1 ……0
2 0 ……1
2的N次幂表示:(39)10=(100111)2= lx25+0x24+0x23+1x22+lx21+1x20
16×16点表示
‘叁’ 变频泵的工作原理
变频泵的工作原理是可以由工频转低频运行,是因为里面安装了变频器。
变频器具有调压、调频、稳压、调速等基本功能,应用了现代的科学技术,可以再不改变电压的情况下调整频率,也可以在频率不改变的情况下改变电压,根据负载需要调整转速,价格虽贵但性能良好,结构复杂但使用简单,是现代控制异步交流电动机启动运行最优秀的设备
利用变频器来改变水泵的转速,来调节水泵的流量和压力,变频器上一般都有闭环控制功能,可以根据压力信号自动控制运行,达到恒压供水。
拓展资料
安装简单、使用方便;水泵试验所有参数一机全部测量,无需再购置其他仪器,方便管理;水泵综合参数测控系统配有各种模拟量信号接口和数字量信号接口,可以直接与电压/电流传感器、功率传感器、互感器、流量计、转速仪、压力计、电子阀、PT100热敏电阻、扭矩仪等仪器连接,使用时只需将所需要的仪器设备接入水泵综合参数测控系统即可,安装简单,一个操作人员即可完成安装工作。
配置灵活;水泵综合参数测控系统的硬件采用模块化结构,并以虚拟仪器显示,方便接口扩展,使用者可以根据自己的需求选择合适的模块来搭配属于自己的系统,比传统的方法更为灵活,数据处理更为快捷,系统的维护和升级更为方便。
人性化的操作界面;水泵综合参数测控系统采用虚拟仪器的形式显示,拥有人性化的操作界面,用户可以根据自身的需求对所采集的数据进行管理。
多种显示方式;虚拟仪器界面提供了数显表、指针式、矩阵三种显示方式,人机界面更加友好。
瞬态数据采集功能;如果选择电子式扭矩仪,电机的输入功率将具有瞬态数据采集功能,能够采集电机启动的瞬时电量参数,并能生成瞬态启动曲线。
标准的试验报告;水泵综合参数测控系统在采集完数据后,可以自动生成水泵性能试验报告,试验报告响应相关国标的要求。
‘肆’ PLC的工作原理及编程的几个误区
一、PLC的工作原理
PLC采用循环扫描方式工作,它对用户程序的执行主要分三个阶段进行,即输入采样阶段、程序执行阶段、输出刷新阶段。
(1)输入采样阶段。在输入采样阶段,PLC按顺序将所有输入端的输入信号读入到输入映像寄存器中寄存起来,接着转入程序执行阶段。在程序执行期间,即使输入状态变化,输入映像寄存器的内容也不会改变。输入状态的变化只能在下一个工作周期的输入采样阶段才被重新读入。
(2)程序执行阶段。在程序执行阶段,PLC对用户以梯形图方式编写的程序按从上到下,从左到右的顺序进行扫描。每扫描到一条指令时,所需要的输入状态或其他元素的状态分别由输入映像寄存器和元素映像寄存器读出,而执行结果写入到元素映像寄存器中。对于每一个元素来说,元素映像寄存器中寄存的内容,会随程序执行的进程而变化。
(3)输出刷新阶段。当程序执行完后,进入输出刷新阶段。此时,PLC将元素映像寄存器中所用输出映像寄存器的状态向输出锁存器传送,成为可编程序控制器的实际输出。
PLC在程序执行阶段,输出锁存器的状态保持不变。PLC重复地执行上述三个阶段,每重复一次的时间就是一个工作周期(或扫描周期)。当然,严格说来,PLC的一个工作周期还包括系统自监测、与编程器交换信息、与数字处理器交换信息和网络通信四个过程。
二、PLC编程的误区
误区之一:输入PLC的常开(动合)、常闭(动断)触点,如按钮、行程开关、继电器辅助触点等,与PLC梯形图编程的图形符号常开“”和常闭“”相混淆。
正确的理解应该是:在梯形图中,PLC内部输入输出继电器在编程中可作为常开或者常闭点无限次使用,其引用的次数及选择常开或常闭完全取决于编程的需要。很多书只提常开或常闭,事实上它不是物理继电器,而是存储器中的一位逻辑状态。当该位为逻辑“1”的时候,表示该位继电器线圈通电,即常开接点“”闭合或常闭接点“”断开;当该位为逻辑“0”时,表示该位继电器线圈断电,即常开接点“”断开或常闭接点“”闭合。
而与PLC外部连接的输入开关(如按钮)或输出负载(如计数器)是物理器件。输入开关具有固定的常开(动合)或常闭(动断)属性,在电路中仅出现一次。它的闭合与断开与外力作用(如按钮,行程开关)或得失电(如接触器)有关,并对PLC内部输入输出继电器的状态产生直接影响。因此,在PLC的程序设计时,必须要知道与PLC连接的物理器件属性和外接开关属性不同,控制程序必然有异。在许多的PLC技术书籍或论文中往往忽略了说明物理器件的属性,仅给出PLC程序,这是不全面、不准确的。
误区之二:将连接到PLC的物理器件的电器符号参与梯形图编程之中。
正确的认识应该是:梯形图是PLC的一种图形符号程序设计语言,有其固定的语法规定和格式,而连接到PLC的物理器件仅能按国标规定的符号出现在硬件电路设计中。连接到PLC的输入器件与连接到PLC的输出器件不存在物理上的连接关系,仅存在满足控制要求的逻辑关系,这种逻辑关系与硬件设计中所选用的物理器件的属性(动合或动断)有关,并由程序(如梯形图)反映。而在传统的继电器控制电路图中,输入器件与输出器件(被控对象)存在直接的物理连接,被控对象的控制取决于物理线路的通断。
误区之三:设计PLC程序时,先画出继电器电路,再根据继电器电路画出梯形图,最后将梯形图换成语句(指令)表达式程序由编程器输入PLC。
正确的方法是:硬件设计完成以后(主要是输入输出器件与PLC的连接电路图),根据控制要求,可直接用梯形图、指令表(助记符)或流程图中的任何一种形式编写程序,通过编程器输入PLC。选用的编程形式取决于所用的编程器,只有当编程器无输入梯形图功能时,才必须将梯形图转换为指令表输入。事实上,一些高档的编程器可接收多种形式的PLC程序,有些还允许两种形式混合输入。只有当对原继电器控制电路用PLC进行技术改造时,才根据原继电器反映的控制关系编写程序。
‘伍’ 防止调度自动化系统失灵事件发生可采取哪些措施
目前最基本的做法是严格操作规范和系统冗余。
调度,指通过指挥、派遣、安排、调整各种相关要素,以达到合理利用资源达到某个目的的人或设备。
自动化,是指机器设备、系统或过程在没有人或较少人的直接参与下,按照人的要求,经过自动检测、信息处理、分析判断、操纵控制,实现预期的目标的过程。
调度自动化,是自动化技术在调度领域的应用。是以计算机技术为核心的控制系统和远程控制技术实现系统调度的自动化,它包括安全监控、安全分析、状态估计、负荷预测、产能控制、自动经济调度等方面的内容。
调度自动化,说到底是电子及计算机技术的应用。因此,防止调度自动化系统失灵事件的发生的基本技术手段是提高设备的安全性能,即提高整个系统所有环节的可靠性。
举例来说,系统软件经常需要操作人员按下“Y”“N”键来对事件进行确认。如果软件只能识别大写(或小写),在操作上就会带来失误,这个软件就不能满足需要。只有同时识别大小写的软件才算合格。
同样,当某个传感器或设备丧失功能时,系统如果不能做出补救措施,就会导致整个系统失效。
为此国际上包括我国对于电子及计算机系统的功能安全有一系列评判标准。目前我国除相应的国家标准(GB)外,还引用国际电工委员会(IEC)、欧盟(EN)标准来对电子及计算机系统的功能安全进行评判。相应的标准主要有:
IEC 61508:(GB 20438)
电气/电子/可编程电子安全相关系统的功能安全性
IEC61508标准规定了常规系统运行和故障预测能力两方面的基本安全要求。这些要求涵盖了一般安全管理系统、具体产品设计和符合安全要求的过程设计,其目标是既避免系统性设计故障,又避免随机性硬件失效。
IEC61508标准的主要目标为:
· 对所有的包括软、硬件在内的安全相关系统的元器件,在生命周期范围提供安全监督的系统方法;
· 提供确定安全相关系统安全功能要求的方法;
· 建立基础标准,使其可直接应用于所有工业领域。同时,亦可指导其他领域的标准,使这些标准的起草具有一致性(如基本概念、技术术语、对规定安全功能的要求等);
· 鼓励运营商和维护部门使用以计算机为基础的技术;
· 建立概念统一、协调一致的标准架构和体系。
IEC61511:(GB 21109)
过程工业领域安全仪表系统的功能安全要求
IEC61511是专门针对流程工业领域安全仪表系统的功能安全标准,它是国际电工委员会继功能安全基础标准IEC61508之后推出的专业领域标准,IEC61511在国内的协调标准为GB/T 21109。在过程工业中,仪表安全系统都被用来执行仪表安全功能,IEC61511标准解决了仪表应达到怎样的安全完整性和性能水平的问题。
对于与安全相关的装置安全功能的确认,SIL等级是全世界广泛认可的安全完整性定义方法。针对过程控制行业,与之相关的国际标准主要有IEC 61508 标准(设计和运行安全仪表系统的基础根据),IEC 61511 标准主要关注过程控制应用的系统,针对装置设计人员遵照 IEC 61511 标准并根据 IEC 61508 标准来完成设计。
ISO13849-1:
机械安全.控制系统的相关安全部分.第1部分:设计用一般原理
新版 ISO13849-1 标准即将在2011年底正式生效实施,这将是机械功能安全领域全新的里程碑。在以往要求系统的确定性上,增加了一些系统故障概率方面的评估,从而可以实现从零部件到系统进行全面性安全评估。同时该标准也为设计人员提供了更多的,可以量化的设计实现方法,如增加了系统安全等级 (PLr)、系统平均无危险故障时间 (MTTFd)、系统诊断检测范围 (DC)、共因故障预防 (CCF)等参数,从而有效的解决了原有 EN954-1 标准无法实现定量化判断系统安全性的问题。
新版 ISO13849-1 标准针对一些新型的控制方法,提供了更有效的安全评估解决方案。可提升控制系统越来越复杂的机械设备的安全等级,保证生产安全性和高效率,并且结合新技术和设计经验,帮助企业在总体效率、生产力和灵活性方面得到提升,保证连续性生产,减少意外停机时间,并降低开发、操作和维护成本。尽快执行该项标准,可保证机械制造商在激烈竞争中抢得市场先机。
IEC62061:
机械安全.与安全有关的电气、电子和可编程序电子控制系统的功能安全
IEC/EN 62061与EN ISO 13849-1:2008标准均包含了与安全有关的电气控制系统。采用这两种标准后,可获得同样等级的安全性能与安全完整性。每种标准采用的方法存在差异,但都适于各自的读者。EN ISO 13849-1:2008在其说明部分的表1中给出一种限定情况。当采用复杂的可编程技术时,应将最高PL性能等级定义为PLd。
为了能够采用复杂的、可由先前非传统系统结构执行的安全功能,IEC/EN 62061标准提供相应的方法。为了提供采用传统的系统结构执行更传统的安全功能所需的更直接、更简单的路径,EN ISO 13849-1:2008标准也给出了相应的方法。这两种标准的重要区别是适用于不同的技术领域。IEC/EN 62061标准仅限于在电气系统领域。EN ISO 13849-1:2008标准则适用于启动、液压、机械以及电气系统。主要定义的参数为PFH、MTTF、DC、SFF等。
IEC61326-3-2:
测量、控制和实验室用电气设备.电磁兼容性(EMC)的要求:与安全相关的系统和用于与执行安全相关功能(功能安全)
IEC 61326-3-1和IEC 61326-3-2标准已经发布,其中规定了安全相关设备的抗扰度水平的附加要求,包括概率非常低的可能发生在任何场所的极端情况。试验模拟设备工作状态下严酷的电磁现象,如瞬时脉冲是模拟数字电路或者数字信号传输的瞬变状态。为了增加安全完整性等级(SIL)的电磁抗扰度的可置信度,在进行抗电磁现象性能试验时相对于基础标准要施加更多数量的脉冲或者加长试验的时间以及提高试验等级。例如对用于SIL3的设备,电快速瞬变试验的等级为4kV,试验持续时间应为基础标准规定时间的5倍。
ISO26262:
道路车辆系统设计功能安全
制定ISO 26262标准的目的是使得人们对安全相关功能有一个更好的理解,并尽可能明确地对它们进行解释。ISO 26262是从电子、电气及可编程器件功能安全基本标准IEC61508派生出来的,主要定位在汽车行业中特定的电气器件、电子设备、可编程电子器件等专门用于汽车领域的部件,旨在提高汽车电子、电气产品功能安全的国际标准。此标准一经提出,即受到了各大汽车制造商、汽车零部件商的高度重视,并积极推动该标准在产品开发中的执行。
基于IEC 61508标准基础上,ISO 26262标准定义了电气、电子系统的使用安全性。汽车设计中的一大难点是如何预先评估潜在的危害和风险,并且采取适当的方法来减小这些风险。为了促进这一过程,ISO规定在开发工作的开始必须要进行“危害和风险分析”。
汽车工业均使用高性能的电子器件进行车辆的安全控制,全球知名各大汽车厂商所共同制定并认可的 ISO 26262 功能安全标准即针对车辆用电子零件、软硬件产品设计的要求进行规范。随着 ISO 26262 的颁布和实施,未来亦能够降低车辆可能发生的风险及意外发生时的危害程度,近而使国内的车辆工业提升国际未来的适应力与竞争能力。
IEC61800-5-2: GB/T 12668.5.2
可调速的电动设备标准.第5-2部分: 功能安全要求
IEC61800-5-2定义了集成安全驱动器的安全功能,其中定义了一系列停车功能(Stop),即:
· 安全断开的力矩/安全中断扭距(STO- Safe Torque Off);
· 安全停车1/SS1(Safety Stop1)/ 安全停车2/SS2(Safety Stop2)
· 安全操作停止(Safety Operation Halt)
IEC61800-5-2同样定义了一些监控功能,这些监控功能方面有:加速度安全限制;步程安全限制;运动方向安全限制;速度安全限制;矩/力安全限制;位置安全限制;电动机温度安全限制。
IEC61800-5-2标准主要针对安全编码器,安全解码器,交流伺服系统,伺服驱动器,伺服马达等系统提出了功能安全要求。例如,符合功能安全技术要求的马达控制器将支持安全扭矩停止(STO)以及安全停止 1 ( SS1 ) 等安全功能,防止意外启动的发生,产品设计必须符合 EN 61800-5-2 标准中的要求。IEC61800-5-2标准已经转化成为国标,标准号为GB/T 12668.5.2,国内对口的标委会为全国电力电子学标准化技术委员会调速电气传动系统半导体电力变流器分技术委员会(TC60/SC1)。
EN50156
IEC 61784-3:
测量和控制数字数据通信 第三部分 工业网络功能安全行规
该标准主要定义了如下内容:
1, 执行IEC 61508种安全相关数据通讯的要求基本原则,包含潜在的错误传输,应对措施和影响数据完整性方面的规定
2. 各种技术实现的通用内容
3. 各种通讯行规簇的功能安全行规的独立描述
4. 规定了几种安全通讯层,作为IEC61784-1和IEC61158系列标准中通讯服务行规部分。
EN50126
铁路应用:可靠性、可用性、可维护性和安全性(RAMS)规范和说明
该标准定义了系统的RAMS(reliability、availability、maintainability和safety),即可靠性、可用性、可维护性和安全性,并且规定了安全生命周期内各个阶段对RAMS的管理和要求,RAMS作为系统服务质量衡量的一个重要特征,是在整个系统安全生命周期内的各个阶段通过设计理念、技术方法而得到的。
EN50128
铁路应用:铁路控制和防护系统的软件
对铁路控制和防护系统的软件进行了安全完善度等级(SIL)的划分,针对不同的安全要求制订了相应的标准,按不同等级对整体软件开发、评估、检测过程中,包括对软件需求规格、测试规格、软件结构、软件设计开发、软件检验和测试、软硬件集成、软件确认评估、质量保证、生命周期、文档等提出相应的程序制定初相应的规范与要求。
EN50129
铁路应用:安全相关电子系统
对于安全管理,引入IEC61508提出的安全生命周期概念,就是说对于安全相关系统的安全部分,在设计时按照该步骤进行设计,并且需要进行全程的安全评估和验证,目的是进一步减少和安全相关的人为失误,进而减少系统故障风险。
上述标准中,对于提高电子设备系统安全性的基本做法,是通过冗余来实现可靠性的提高。
事实上可靠性再高的系统,也存在失效的可能。特别是调度自动化系统中大量采用的软件,只能通过理论认证和有限的测试来确定其可靠性。所以在实际使用时,必须严格操作方式,使得所有操作都在已经测试检验过的范围内。就如上面举例中所说的大小写输入,如果只进行过大写输入的测试,实际使用时就应当避免输入小写。